'LOAN COPY OMEY.

PROCEEDINGS

International Institute of Fisheries Economics \& Trade

Volume 2: A Compendium of Papers on Seafood Trade and Markets

NATIONAL SEA GRAKT DEPDSYTORY
PFLL LIERARY BIGLDNGG
URt, NARRAGANSETT BAY CAMPUS nARRAGANSETT, RI 02882

Christchurch, New Zealand
August 20-23, 1984

 Son Cont Eapmitury

Proceedings of the second Conference of the International Institute of Fisheries Economics and Trade

Volume 2: A Compendium of Papers on Seafood Trade and Markets

August 20-23, 1984
Christchurch, Hew Zealand

This volume of the proceedings of the 1984 conference of the International lnstitute of fisheries Economics and Trade contains papers which focus on international seafood trade and on aspects of seafood markets. They were prepared, in part, through funding support provided by the oregon State University Sea Grant Callege Program. Support for the conference was also provided by the following: New Zealand Ministry of Agriculture, New Zealand Fishing Industry Board, Oregon State University's Department of Agricultural and Resource Economics, the University of Canterbury Centre for Resource Management, Air New Zealand, and Ferons Seafood Limited. Their valuable contributions towards the success of the conference are gratefully acknowledged.

Ordering Publications
Copies of this publication and its companion volume (Volume l: Economic Recovery, Fisheries Economics, and Seafood Trade) are available at cost from the Interfational Institute of fisheries Economics and Trade, Department of Agricultural and Resource Economics, Oregon State University, Corvallis, Oregon 97331, USA.

This publication is the result, in part, of research sponsored by MOAA office of Sea Grant, Depar tment of Commerce, under Grant No. NAB1AA-D-00086 (Project NO. R/PPA-20). The U.S. Govermment is authorized to produce and distribute reprints for governmental purposes, notwithstanding any copyright notation that may appear hereon.

The Oregon State University Sea Grant College Program is supported cooperatively by the National Oceandc and Atmospheric Administration, U.S. Department of Comerce, by the state of Oregon, and by partictiating local goverments and private industry.

Table of Contents

Economic Recovery and Seafood Markets
The Soviet Union's Fishing Industry and USSR's Foreign Trade in fishing Industry Products 1
Jan Solecki
The New Ocean Regime: Implications for International Seafood Trade
Extended Fisheries Jurisdiction and International Seafood Trade 17
Richard S. Johnston and Arthur Siaway
Extended Jurisdiction, Factor Mobility and Seafood Trade. 31
James R. Wilson
Changing Structure of Fisheries and Seafood Markets
Situation and Prospects in the West European Market for Shrimp. 49
Rolf Lasch
A Model of World Trade in Fish Products 55
Ulrich Sommer
Fisheries and Seafood Market Development
Non-Tariff Barriers to Trade in Fish and Fish Products with Special Reference to the EEC 63
Ian Scott
King Crab Trade and Exploitation: The Chilean Experience. 67
Gustavo Montero and Frederick J. Smith
Development of a U.S. Surimi Industry 75
Sharon E. Gwinn

Seafood Trade Models

Modeling Issues Pertaining to Fisheries Management and Seafood Trade. 81
Trevor Young
An Econonetric Analysis of Salmon Markets 87
Biang-Hwan Lin
Multinational Arrangements
Export Marketing Strategies for Fist and Fisheries Products: Lessons From International Iuna Joint Ventures in the Southwest Pacific 99Karl C. Samples
Fisheries Management: Theory and Practice
Imperfect Competition and Transboundary Renewable Resources: The Implicatians for Fishery ControlPolficies.111
Susan M. Capalbo and Richard E, Kowitt
Commercial Fisheries vs Aquaculture: Conflicts in the Northwest Salmon fishery. 127
James L. Anderson and James E. Wilen

Economic Recovery an Seafood Market

The Soviet Union's Fishing Industry and USSR's Foreign Trade in Fishing Industry Products

Jan Solecki
University of British Columbia
Vancouver, British Columbia, Canada

The last ten years, or as the soviet economists would put it, the period of the last two five year plans (1976-80 and 1981-85) have not been kind to the Soviet economy. As can be seen from Table 1 , the oerformance af the Soviet economy has been disappointing. Dutputs of the primary industrial commodities, such as steel, coal, fertilizers, tractors, have suddenly leveled out or even declined. Grain harvests, measured against plans or against a standard per capita norm of 750 kg . per person per year, fell far short of the requirements (see Table 2). The need for the fishing industry to step in, to ease the difficulties in food supplies, was obvious, but the introductior of the $200-m i l e$ economic zone has resulted in catches beiow the expected planned ones (see Table 3). And this is not surprising. Within
 tons (mil. t.) of aqua-products (K.A. Bekiashew, $\quad 9,1977$). In the remaining years of the x five Year Plan, after the introduction of the new restrictions in 1976 , soviet landings instead of rising as planned to $11,142 \mathrm{mil} . \mathrm{t}$. have actualiy declined and in 1982 were still below the l976 level (see Table 3).

Neither the current XI Five Year Plan (1981-55) nor the Supplies Program (Prodouolstwennaia Programa) issued in mid-1982 gave target figures for fishing industry landings in 1985 or 1990 . The XI fyp bids the industry"to increase the volume of commercial edible fish products (inciuding canned) by 10-12z. . to increase the yield from inland waters and coastal seas of the JSSR, and at an increased rate to enhamce the production of fish in pens, ponds, lakes and other fish breeding enterprises to insure an increase in the output from these enterprises by 1.8 to 2 (Anon. Ekonomicheskaia Gazeta, 49 , IGB0) times by means of strengthening cooperation internationally and forming joint ventures to maintain at a sufficiently high level Soviet catches in the fishing zones of other nations (N. P. Kudriavtsev, *l, 1981). Per capita consumption of fish in 1985 is to Fi se to 18.2 kg . per year compared to 7.0 kg . in $1950,15.4 \mathrm{~kg}$. in 1970 and 16.8 kg . in 1975 (see Table 5). But this was to be achieved by using 80 m of the landings for food production compared with 63.98 in 1975 and 72.4% in 1980 (see Table 4).

But the main emphasis in the future will still be given to the use of the open seas outside of the
 the official pronouncements calling for increased landings from inland waters the situation has not improved. The catches from these waters dropped from 350 thousand t. in 1976 to 203 thousand t. in 1980 , mainly due to pollution by industrial and agricultural effiluents and to the operation of water intake points without fish protection devices (I.V. Nikonorov, *6, 1982).

XI FYp provides for an increase in the output of live and chilled fish af 40.8x, smoked fish 12.3n, dried 24. 6x, delicatessen (balyks) and culinary products 16%. The increase in catches from fresh water bodies is to be $1,7-1,8$ fold (N.P. Kudriavtsev, 1,1981). The Supplies Program (Anon. Prodovolstvennaia programa SSSR, 1982) introduced on May 24, 1982 appears to have raised the targets for the fishing industry. The output of commercial fish from fish breeding enterprises was to increase during the decade about three times. Output of edible fish was to rise by 1985 to 4.2 mik. t. and by 1990 to $4.3-4.5 \mathrm{mil}$. t. Canned fish production figures are 3 billion and not less than 3.2 billion standard cans respertively. The total volume of landings is to rise tc g. T7 mil. t. and tho nutput of fist mept to reach 500 thousand tons (E.A. Romanov, 112,1982).

To cope with its assignments the fishing industry has at its disposal 90 scientific research, design and construction organizations, 68 acadenic institutions, 351 production and research/production

[^0]Table 1. output of Selected Commodities in the USSR

Year	$\begin{aligned} & \text { El. Po. po. } \\ & \text { Bd. kwn } \end{aligned}$	$\begin{aligned} & \text { Stee } 1 . \\ & \text { mile. } \dagger . \end{aligned}$	${ }_{\text {Mi1 }}^{\text {cosi }}$ ¢.		$\begin{aligned} & \text { Fert } 11 \text {. } \\ & \text { wil. } T . \end{aligned}$	$\begin{gathered} \text { Cars } \\ \text { Thous. } \end{gathered}$	Tractors Thous.	nil ${ }_{\text {Hood }} \mathrm{m}^{3}(S)$	$\begin{gathered} \text { Paperer } \\ \text { Thous. } \end{gathered} .$	Mil. Prs.	mil. ${ }_{\text {Grain }}$	$\begin{aligned} & \text { Meat }{ }^{2} \\ & \text { mit. } T . \end{aligned}$	$\begin{aligned} & \text { Butter }{ }^{2} \\ & \text { Th. } 5 . \end{aligned}$	${ }_{\substack{\text { Popul. } \\ \text { Mil }}}$
1950	91.2	27.3	261	37.9	1.2	64.6	117	266	1193	203	81.2	$\begin{array}{r} 1,6 \\ ? \end{array}$	$\begin{gathered} 336 \\ \vdots \\ 737 \end{gathered}$	181.6
1960	292	65.3	510	148	3.3	139	239	370	2421	419	125.5	8.1	848 963	216.3
1970	741	116	624	353	13.1	344	459	385	4185	679	186.8	12.3 9.9	1067 1231	241.7
1975	1039	141	701	491	22.0	1201	550	395	5215	698	140.1	15.0 8.4 8.	1356 1263	253.3
1976	1111	145	712	520	22.6	1239	562	385	5389	724	223.8	13.4 9.1	1356 1408	255.6
1977	1150	147	722	546	23.5	1280	569	377	5459	736	195.7	${ }_{9.6}^{14.7}$	1500 1381 1	257.9
1978	1201	151	123	572	23.7	1312	576	362	5548	740	237.4	15.3	1472 1325	260.1
1979	1238	149	718	586	22.1	1314	557	354	5249	740	179.3	15.5	1429	262.4
1980	1295	148	716	603	${ }^{24.8}$	1327	555	357	5288	744	189.1	15.0	1373	264.5
1981	1326	148	704	609	26.0	1324	559	${ }^{358}$	5399	138	160.00?	15.2	1318	266.6
1982	1367	147	718	613	26.7	1307	555	356	5439	134	180.003)	15.4	1403	268.8

[^1]2. Top figure - without the production from private plots; lower figure includes the private plots production.
Source: Marodnoe Khozfaistyo SSSR (USSR National Economy). Statistical Year gooks, Finansy i Statistika, Moscow, 1958-1982.

Table 2. Grain Output Planned, Needed and Harwested, Mi. T.

* It is assumed that $3 / 4$ of a tonne per capita per year is needed.

1. Birectives of XXIII Congress of CPSU on the five year plan for the developmert of national econony the USSR over 1966-1970 required an increase of 30% over the output of the previous fy period. The output during 1961-65 was 651.7 mit . t. : therefore, $1966-70$ was to be 847.2 . Izd. Polit. Lit. Moscow, 1966, p. 30.
2. Directives of the XXIV Congress of CPSU on the five year plan for the development of the national economy of the USSR pver 1971-75. Izd. Pol. Lit. Moscow, 1971, p. 33.
3. Main directions of the development of the national economy of the USSR over 1976-80. Politizdat, Moscow, 1976, p. 50.
4. Main directions of the economic and social development of the USSR for $1981-85$ and for the period a to 1990. Politizdat Moscow, 1981, p. 46.

Table 3. Dutput of the USSR Fishing Industry

Year	Fish, etc. Landings Mil. T.	Canned Fish Output Mil. S.C.*	Edible Fish Products Mil. T.
1917	893		
1920	257		
1922	483		329.74
1930	1,283	161.2	
1940 1950	1,404	124.2	323..4
1950 1960	1,755	200	se.
1961	3,541 5,774	726 977	
1970	7,828 $1976-80^{2}$	977 1,393	
1975 1976	10,357 \quad Plan	2,207	$4,000^{5}$
1977	$\begin{array}{rr}10,478 & 10,514 \\ 9,651 & 10,671\end{array}$	2,317	
1978	$\begin{array}{ll}9,651 & 10,671 \\ 9,230 & 10,828\end{array}$	2,467 2,669	
1979	$\begin{array}{ll}9,359 & 10,898\end{array}$	2,669	
1980	9,526 11,142	2,830 P. $3000{ }^{3}$	$4,700{ }^{3}$
1981	9,600	2,927 P. 3000	4,700P
1982 1985 P	10,000	2,853	
1990P		3,000	4,200 ${ }^{6}$
¢		3,200	4, 300-4, 500 ${ }^{6}$

*s.c. : standard can $=353.4$ grams

1. Narodnoe Khoziaistwo SSSR (USSR National Economy) Statisticai Year Books. Statistika Moscow.
2. Harodnoe Khoziaistvo SSSR 1922-1977 (USSR Mational Economy 1922-1977). Statistika Moscow, 1978, p. 21.
3. W. Kamentsev. Perspektivy rozvitia rybnogo Khozialstya planovoe Khoziaistvo 1978, 1, p. 9-18.
4. E.A. Romanov. Rytnaia promyshleanost 2 a 60 let. Rybnoe Khozidistvo 1982, 12, pp. 3-11.
5. M.G. Itchuk, L.P. Kuzaita, N.F, Kalishchuk, O.I. Rodionova, F. Y. Senko, M.G. Spitsina, L.A. Filippowich, V.V. Chernova. Exonomika organizatsia planirovanie proizvodstva na predpriatiakh rybnoi promystilennosti (Economics, Organization and Planning of the output at the Enterprises of the Fishing Industry). Legkaia i pishehevais promyshlennost. Moscow, 1982, p. 303.
6. Prodovolstyenraia Programa SSSR na period do 1990 goda (USSR Supplies Program for the Period up to 1990). Pravda, 27.w.1982.

Table 4. Utilization: Percent of the Catch

1975	63.9^{2}	63.0^{3}	72.4^{4}
1980	70.01	74.4^{3}	
1981	73.1^{2}		
1982	75.01	75.0^{2}	
1985	76.01		

1. M.P. Kudriavtsey. Prodovolstvenhaia programa if rytnoe Khoziaistvo (Supplies Program and the Fisherles). Rybnoe Khoztaistvo 1982, 19, pD. 3-4.

2. N.P. Kudriavtsev, 1 st Deputy Minister of the Fishing Industry of the USSR. Rybnoe khoziaistvo y

3. L. I, Borisochkina. Puti poyshenia vypuska pishchevol ryphot produktsif (Ways of Increasing the

Table 5. Per Capita Fish Eonsjmption in the USSR

1913	6.7^{1}
1950	7.0^{1}
1955	9.1^{1}
1960	9.9^{1}
1965	12.6^{1}
1970	$15.4^{\frac{1}{2}}$
1975	16.8^{1}
1980	17.6^{7}
1981	18.0^{2}
1982	18.4^{2}
$1985 p$	18.2^{3}
$1990 p$	19.0^{4}

1. N. P. Sysoev. Ekonomika rybnoi promyshlennosti (Economics of the fishing Industry). Pishchevaya Promyshlenmost) Moscow 1976, p. 17.
2. Statisticheski yezhegodnik stran-chlenow Soveta Ekonomicheskoi Wzamopomoshchi 1983. Finansy i Statistika (Statistical Year Book of the Comecon Memter Courtries 1983). Moscow 1983, p. 48.
3. V.M. Kamentsev. Zadachi rybakov v razvitii Prodovalstuennoi Programmy Strany (Fishermen's Fasks in the Development of the Supplies Program). Rybnoe khoziaistwo, 1983, \#12, op. 15-17.
4. S.A. Studenetski. Prodovolstvennaia programa i zadachi rybokhoziaistyennoi nauki (Supplies Program and the Tasks of the Fisheries Economics Science). Rybnoe khozisistvo 1983, $11, \mathrm{p} .3$.
amalgamations and industrial enterprises, 440 trading organizations 382 of these retail outlets of which 116 were opened during 1975-80 period), over 250 refrigeration plants with one time capacity of nearly 400,000 tons of fish. In all the fishing industry has 54 fishing, refrigeration basis for the fleet, 19 ports, 244 fish processing, 198 fish breeding, 66 ship repair and metal working plants, 17 packaging material manufacturing and 7 net knitting enterprises (E.A. Romanow, \#12, 1982).

The Ministry of Fishing of the USSR was instructed to undertake measures to considerably expand and renovate the assortment of fish products, improve the quality and taste, double the output of live and chilled fish during the decade. During the current decade $200-240,000$ tons of refrigeration capacity is to be commissioned.

The pressure to meet the targets, to produce more edible products from constant and even diminishing catch has indeed led to increased output, but with some undesirable consequences. "The wholesale trade system handied by Soyuzrybpromsbyt (All Union Fish Products Selling Organization) and the retail organizations of the fisheries enterprises amalgamations (centres) began to experience difficulties in selling some types of fishing industry products, including such items as frozen ocean fish classed as small group II and III, in particular moiva, frozen sardines, salted and marinated products, pastes from scad, mackerel and some other species of fish. Delays in selling these products resulted in tying up transportation and other vessels and box cars which in turn affected the work of fishing vessels at sea and resulted in certain restraints to production" (E.A. Romanov, 112,1983).

An important consideration from the Soviet point of view is to secure an adequate resource base for fisheries operations. Being the owner of the largest fishing fleet the USSR has tried to establish and maintain good relations with other countries. At the start of the eignties the soviet union had $\overline{0}$ bilateral agreements with 39 countries and 13 multilateral (U.M. Kamentsev, 12, 1982).

Fishing Fleet

The mainstay of the Soviet fishing industry is its fishing fleet, In 1978 it gave the country 908 of the total catch, about 85% of fish products, 40% of canned fish and nearly all the fish meal. Eightity percent of the industry's production capacity was its fishing fleet (Kamentsev, \%1, 1978). However, by the
beginning of 1981 this figure dropped to 79% indicating a tendency towards giving a greater importance to shore installations (N.P, Kudriaytsey, \#1, 1981).

As is the case with many other resources in the USSR there is a considerable disproportion between the production capacity and the demand for fishing industry products. Narth western, Baltic and the Far Eastern regions of the USSR with only 10.8% of the country's population had 86.3% of the capital equipment of the industry. In 1977 they employed 72.5\% of the industry's labor, caught 77.8% of fish and produced 73.9\% of industry's gross output (Sysoyev, \#1, 1980). Given below are details of the composition of the Soviet fishing fleet (see Table 6).

Table 6. Fleet of the USSR's Ministry of Fishing Industry Registered in the JSSR on duly 1, 1982 (Self Propelled Vessels of Gross Capacity of 100 reg. tonnage and above)

| | Type of Vessel | Number | Gross Registered Tonnge |
| :--- | :---: | ---: | ---: | Deadweight Tonnage

1. A vessel carrying more than 12 passengers.
2. A vessel for transporting non-liquid cargo,
3. A vessel for transporting liquid cargo.
4. Granes, dredges, barges, floating workshops, pump stations, etc.
5. Fishing and fishing-and-processing yessels.
6. Research expeditionary, geographic, training vessels, whalers, processing vessels which do not do any fishing.
7. Tugs, rescue vessels, messenger carriers, pllot carriers, ofl cieaners, divers, fish protection sanitation vessels, port fuel supply vessels, vessels for collecting waste oil, bilge water collectors, etc. (Ryonoe khozialstvo 1983 No. 4, p. 54).

Fishing Industry's Position in the Soviet Econony

Difficulties experienced by the USSR in agriculture enhanced the position and the status of the fishing industry. Due to the increase in the volume of landings and especially due to more intense use of the catch, the per capita consumption of fishing industry products already in 1982 reached 18.4 kg. , which exceeded the growth rate envisaged by the Supplies Programe and the initial norn established oy the scientists (5 . A. Ronanov, 12,1983). As cant be seen from Table 7 , whereas 1980 consumption of meat ofounted to only 708 of the norm recomended, of ailk $78 x$; of eggs $82 x$ that of fish was $97 x$, and position ccounted for one quarter of the total amount 198. By 1983 in mat/fish contribution to diet, fish state has to spend only about one third of what is needed for meat production (S. A of fish protein the 19R3).

In 1977-78 fisinting industry employed 800,000 people of mom 160,000 had university or specialized training (A.A. Ishkov, 11, 1977). This is equivalent to 20x conpured with 23.6x for the national labor
 were 438,000 people engaged directly in the production procestest, the filue of capital assets of there

Tas? 7. Fer Caplta Anmal Consumption of Selected Food Products in the USSA

Commodity	Rectorinended Norin Per Year	1965	1970	1975	1980	Percent of the Norm	1990P
Meat and neat proaucts. kg -	82	41	48	57	58	(70)	70
Milk and milk products, kg.	405	251	307	316	31.4	(78)	$330-340$
Eggs, buits	292	124	159	216	239	(92)	260-266
Wegetables, kq .	146	72	82	89	93		126-135
Fruit, kg.	113	28	35	37	34		$66-70$
Vegetable oil, margarine, kg.	9	7.1	6.8	1.7	8.8		13.2
Fish and fish products, kg.	18.2	12.6	15.4	16.8	17.6	(97)	19
Bread, pastry products	:10	156	149	141	139		135
Potato, kg.	97	142	130	i? 0	112		110
Sugar, kg.	40	34.2	38	40.9	44.4		45.5

Source: S.A. Studenetski. Prodovolstvennaia programma zadachi rybokhoziaistvennoi nauki fonsumer Suppliers Programme and the Task of the Fisheries Science). Rybnoe khoziaistvo. 1983, il, p. 3.
industry amounted to 10 billion. "..-Fishing industry atcounted for 83 of the gross output of the food producing industries of the country (M.G. !lchuk, et al.)
in spite of the set back caused by the introduction of the 200 -mile economic zone, the soviet union takes an optimistic view of the future possibilities for the fishing industry. It is said that "the present day knowledge about world oceans makes it possible to assert that its biological production amounts to hundreds of billions of tons, while only an insignificant amount is utilized; 75 milli on tons. It is pointed out that according to FAO , in 1980 approximately 30 million tons of bioresources of shelfs have not been used (S.A. Studenetski, \#1, 1983).
One of the features of the Soviet Union's stand in respect to the fisheries resources is her stressing the outsiders' right to unutilized resources of the $200-m i l e$ economic zone of other countries. While discussing the [ll uN Conference on the Law of the Sea V.I. Ikriannikov of the Ministry of the fishing Industry of the USSR states "The most important stand of the convention in respect to live resources of the economic zone is the obligation by the coastal state, side by side with the conservation of the resources, to insure their optimumutilization, and arising from this a position about the obligation to permit foreign fishermen to enter the economic zone to harvest residue of the allowable catch (V.1. (kriannikov, \#5, 1983). (Emphas is mine, 3.S.)

Natural Resources of the Soviet Fishing Industry

Restrictions placed on the Soviet fishing industry operations by foreign countries have encouraged the Sowiet scientists to take a closer look at their own resources, consisting of continental shelf, the resources of the shore line, and those of the inland waters.

The USSR's continental shelf area, excluding Aral and Caspian Seas, amounts to 6.6 million sq. km. or approximately one fourtrin of that availdule fis the war? Furthermors, the aroa of the shelf less than 50 m. deep (also excluding Aral and Caspian Seas) amounts to 3.2 mil . sq. kno. or nearly 50 x of the shelf area of the USSR and 11.8% of the world shelf. The overall length of the shore line in the USSR is more than 60 thousand km . (V.P. Zaitsev, 78,1978), However 806 of the USSR's shelf is in the Arctic region and requires special attention (A. Alekseev, L. Dushkina, et al., Pravda 4, August 197B). For example, the white Sea is considered particularly vulnerable because of the pollution coning from rivers emptying into it and which already now threaten the flora and fauna of the sea (A. Aleksear, L, Dushkina, et al.). The area of the shelf adjoining oill and gas bearing regions of the USSR amounts to 2.5 mil . Sq. km. or
nearly 40 of the total. The most promising as possible sources of mineral resources are casplan, Okhotsk and Bering Seas, a fact not necessarily favoring the fishing industry. (for details of the USSR's continental shelf see Table 8). Furthermore, the souiet union has in all 377 thousand sq . km . © shereline waters less than 25 m . deep of which 38 thousand $5 q$. km . are thought to be suitable for mariculture. It is estimated that between $348-800$ thousand t. of plant vegetation, $290-350$ thousand t, of crustaceans and $340-900$ thousand t. of fish could be bred within this shallow zone alone (P.A. Moiseev, "2, 1980) (see Table 9).

Table 8. USSR's Continental Shelf, Thousand Sq, km.

Sez	Total Area	Shelf Area	Shelf Less than 50 m . Jeep	lengt" of coastlir
Aral	66	66	65	6,617
Caspian	394	250	156	6,100
Azov	39 913	39	39	2,686
Black	413	120	4 B	2,040
Baltic	385	385	216	1,200
White	89 +405	89	60	2,500
Barents Kara	1.405	660	70	4,600
Kara Laptev	883 650	800 480	880	950
Laptev	650 901	480 860	370	7,500
Chukotka	582	888	660 190	5,918
Bering	2,304		190 440	1,620
Okhotsk	1,590	1,020 620	440 150	5,251 10,440
Japan	980	80	30	$\begin{array}{r}10,40 \\ 3,070 \\ \hline\end{array}$
toral		6,051	3,374	60,492

Note: The area of the shelf of the Barents and Kara Seas is shown within the limits of 200 m . isobath, the length of the coastline of Caspian, Black, Baltic, Barents, Chukotka, Bering and Japan Seas - portions within the limits of the USSR.
Source: V.p. Zaitsev. Ispolzovanie prirodnykh resarsov shelfa i ego preobrdzovanie tutilization of t f Natural Resources of the Shelf and its Re-shaping). Rybnce Khoziaistro. 1973, No. 8, po. 8-1

The size of the Soviet Union guarantees the avalability of natural conditions for inland fishing and fish cultivation. Within the USSR there are $600,000 \mathrm{~km}$. of rivers that can be of walue to the fishing industry, there are 280,000 lakes with an ared of 25 million hectares, and there are over 200 large reservoirs with ath area of nearly 6 million ha. (V. Kamentsev, *1, 1978).
Mariculture th the USSR (similarly as elsewhere) is a relatively new field. The reasons given for havi neglected th are: (1) traditional orlentation to fishing in seas and oceans and the consequent commitment of labor and material to $t \mathrm{t}$. (2) relatively severe climate over the large portion of the shelf. (3) anthropogenic action upon inner seas, (4) unfavorable geomorphology of the coastline in many regions and (5) absence of experience, and lack of a material and technical base necessary for cultivating marine organisms on an industrial scale. In the USSR, mariculture has ceased to be an obje of purely scientific research and development but has not as yet become a sphere of industrial cultivation of valuable sea spectes. However, promising lines have been chosen, and these are: Far East: Greedtag of salmon, oknotsk herring, scallop, mussels, oysters, sea cucumbers, laminaria, gratsilaria and kostaria. For the sea of Azow and the Black'sea: mullet, flounder, sturgeons, sea perch, steelhead salmon, mussels, glacilaria. For the European North; founder, sturgeons, banded mussels. laminaria. For baltic basin: rainbow trout, sea trout and cort Atlantic salmon, coho salmor marine aquaculture have been developed and poputrout, sea trout and coho salmon. Ranching forms of matnly of salmon and stargeons. Over 60 fish iarized. These are combined with artificial reproductior inner seas release annually over a billion juventles of salmon and over 100 million coastal regions and on Regional enterprises of ranching type are juventles of salmon and over 100 million of sturgeons. South of the country, where in the face of intense sathron in the Far East and for sturgeons in the maintain bat also to increase the populations of the very valuable diadronce it was possible not only t Okhotsk natural spawning conditions have been improved sife 1076 diadromous fish. In the Sea of spaming grounds have been put out which has helped in rebuilding the pere 50 , oun su. mo or artiticiat 1985 it is plamned to put out some 700,000 sq. W. of such spaming grounds.
The USSR has had some experleace with successful results in pen breeding of sturgeons and salmons in the coastal waters of the saltic, Sea of Azov and the glack sel., mainly infishing collective farms in the (kolkhozes). Further success would depend on buildtag storm resistent pen structures ive farms rearing methods, better medical care and the supply of the appripritate food, cultiv, on perfecting
Table 9. USSR's Shallow Water Zones and Their Potential for Mariculture

Regton		Area, thous. km. ${ }^{2}$		Coefficient of Shoreline Irreguiarity	Possible Yield, t./ha.			Possible Output, thous. t .		
		$\begin{aligned} & 0-25 m . \\ & \text { Deep } \end{aligned}$	Of Which Usable for Mariculture		Plants	Invertebrae	Fish	Plants	Invertebrae	Fish
Morth Boreal	Bering	150	15	2.8	20-60	100-200	20-100	40-120	20-80	40- 90
	Okhotsk	30	3	1.9	10-40	160-200	10-30			
	TOTAL	180	18	-	-	-	-	60-200	30-120	50-120
	Barents	20	2	2.0	20-60	100-200			10-40	10-50
	White	30 80	8	4.0 3.5	20-60	$100-200$ -	$15-50$ $100-200$	$20-60$ $4-30$		$5-30$ $40-90$
	TOTAL	130	13	-	-	-	-	44-150	20-80	55-170
South Boreal	Okhotsk	10	1	1.9	20-60	100-200	10-500	100-170	20-80	40-80
	Japan	8	1	2.2	20-100	200-300	100-700	140-710	100-250	100-200
	TOTAL	18	2	-	-	-	-	240-380	120-330	140-200
	Black	10	1	1.8	20-80	300-400	200-300	4-70	120-320	55-170
	Azov	39	4	3.8	-	-	200-300	-		
	TOTAL	49	5	-	-	-	-	4-70	120-320	95-320
	Pacific Ocean	198	20	-	-	-	-	300-480	150-450	190-400
	Atlantic icean	179	18	-	-	-	-	48-320	140-400	150-500
	total	377	38	-	-	-	-	348-800	290-850	340-900

Source: P.A. Molseev. Osnovnye mapravienia razvitia marikultury (The Main Directions for the Development of Mariculture). Rybnoe Khoziaistivo.
and especially bivalve molluscs comercially is the most common. In the far Eastern $05 S R$ there exist particularly favorable conditions, though opportunities also exist in Azov Sea. It is possible to caltivate commercially Yezo scallop, Pacific oyster and Mediterranean mussels. Since the late seventi in Posyet 8 ay experimental/comercial cultivation of sea cucumbers and oysters has been carried out. Ammally up to ten million sea cucumbers have been collected and placed in pens. The first batches of commercial product have now been collected. Work is also being done on acclimatization of species. Thus, Far Eastern mullet is being introduced into the Caspian and glack Seas, Black Sea mullet is bein introduced into the Caspian and the Far Eastern pink salmon have been introduced into Barents and whit. Seas (S.A. Patin, 2,1984). Ster let and Lend sturgeon were introduced in the 0ka i $4 . K$. Kiselev, 76 . 1978).

Enthusiasm is expressed about breeding fish in ponds. This type of fish breeding was started in : he thirties. In 1960, the area of ponds amounted to over 50,000 na. and 14,100 tons of fish were grown i them, mainly carp. Ouring 1960-1975 the ared of ponds trebled and the output increased tenfold. 3y ly pond ared increased still further to reach $208,700 \mathrm{ha}$. and the output of fish climbed to 166.4 thousan t. Yield reached 1060 kg ./ha. of marketable fish (E.A. Romanov, \#12, 1982). By $198565,000 \mathrm{ha}$. of nel ponds are to be built while $30 x$ of the existing ones are to be rebuilt and re-equipped. The output of comercial fish from them is to rise to 300,000 tons. Yield from ha. in ponds is to reach 1480 kg . It 1982 yield from feeding ponds was 1220 kg . $/ \mathrm{ha}$. and the plan for 1984 sets a target of $1380 \mathrm{~kg} . / \mathrm{ha}$. (E.) Romanov, (1, 1984).

Reservoirs. Extensive hydroelectric construction programs carried out in the USSR during the past thre decades have resulted in an area of reservoirs covering over 11 million ha., 50 of which are cons ider to be suftable for fishing industry operations. There are in the USSR over 200 large reservoirs of wh 120 serve hydroelectric projects. In addition next to thermal power stations there are cooling ponds with a total area of 140 thousand ha.

Annual catch from large reservoirs has been $50-60,000$ tons. The average productivity has been $10-12$ kg . /ha., but in some reservoirs the yields have been consitarably higher, for example in Tsimbanski Reservoir $50 \mathrm{~kg} . / \mathrm{ha}$. , at Kremenchug 40 , in Kahovski approximately 30 kg . $/ \mathrm{ha}$.

Based on the reservoirs there are at present 18 fish breeding plants and hatcheries capable of oroducis 250 million larvae, 141 million yearlings and 69 million two-year old fish. Over the past two decades 3.2 million breeders, nearly 30 million different size fish, 400 million young and over a billion of larvae of 33 commercial species of fish have been introduced into reservoirs. Among the plant eating spec ies introduced were bream, zander, wild carp (sazan), carp, carassius, sturgeon, peled, omul, white-fish, cisco, blue bream, vimba, roach and others.

From the reservoirs are caught annually 10,000 tons of acclimated fish, of which 6,000 tons were plant
feeding.
Over the same perlod of time 951 million food organisms have been introduced into reservoirs, fish ladders and platforms, fish lifts (hydraulte and mechanical) and fish sluices and other devices have be
installed (M.L. Kashintsev). trialled (M.L. Kashintsen).

Utilization of hot water from thermal, and atomic power stations and also of geothermal waters is considered to be promising in fish breeding and is being given considerable attention. It is stated th in such water fish grows and reproduces $2-3$ times faster than can be reared all the year round. They grow more intensely and have a high rate of survival during the subsequent rearing th ponds. Output of cooling pond of Imlevskaia power station in kharkoy too distant future reach 100,000 tons. In the over 100 kg . af carp per sa. $\mathrm{m}_{\text {, }}$ at Mironouski enterplast and in floating pens the yteld obtained was the yield of trout has been 60 kg . per $s q$. m. of the reseing area. nutilization of with pools, in winter possible to create a new, more progressive branch of industrial fish brization of warm waters makes i considerable saving of agricultural land, the production base is close to ing. It results in a fully mechanized thus resulting in a rise to labor productivity $2.5-3$ fold. The area centres, it can be Instalations is hundred times less and the yield exceeds the yield from ponds area occupied for such Kamentsev. 11, 1978). it is suggested that in the future constructton of fish breadisand times" (V. should be included in the preparation of the plans for the construction of the breeding enterprises financed as part of such construction.

The optimistic forecasts and valuations found to the Soviet press and technical literature should not bs taken as likely to be realizable. There is evidence to show that like any other economy, the Soviet one is prone to malfunctioning. For example on lif february 1983 Pravda published some of the results of an
examinat ion of 20 fish breeding enterprises, which ouer fubites in investurents. in resuits or the examination showed that the production cleived some 40 milila being utilized only 64x. The 0on carp was found so debilitated that tis weduction capacity in them was gr. More than 25\% of the feeding area became shallow due to neglect. Dut of dropped from 500 to 338 eight were out of comaission. A model enterprise could not even supply itself with futting machines result the Hovocherkask combthe of Donrybaron, created in 1975, gave in 1982 2,700 fish stocks. As a 6,000 and the situation in others mis even worse.

Expenditure of feed exceeded the norm by 1.5 times. In kubyshev production group the suskanski enterprise prodiced less than 50% of $10,500 \mathrm{~kg}$. planned. One third of the ponds were found to be salinated, overgrawn with weeds, becoming mud patches. Fish food was sold on the side, part of it was stolen. For example in Solutsevski fish breeding enterprise out of 395 tons of fish food 217 were sold illegally. Average weight of fish was 200 gr . A similar situation was found in Briansk in Kaluga oblast. Traimed specialists hired by the industry left their jobs. Out of 590 specialists hired one year earlier 360 left. As a result the head of the Administration of pond fish breeding of the Ministry of Fisheries of the Russian Souiet Federated Socialist Republic, A. Korenevski, was sacked, Deputy Minister P. Sypugin was reprimanded and other corrective measures were taken (Pravda, 11 February 1983).

An interesting manifestation of the Soviet desire to holit on to the right to use common marine resources is the ir attitude to the restriction on whaling which they have been wigorously fighting.

Analysis of the material data on the evaluation of the state of reserves of whales shows that there are dequate grounds to maintain into the future the existing rational whaling in various regions of the world ocean on the essential condition that it is done in accordance with the objective recomendations of the scientific Conmittee of the international Whaling Commission and observing the currently operative regulations for whaling, while matintaining strict international control.

Certain decisions taken during the last few years by the iw, spec ifically banning oelagic hunting of whales (except for Balaenopteridae), and also complete banning of the operations after 1985, (apart from funting by the aboriginees) have no scientific basis. Furthermore, they have been taken in the ahsence of amy recomendations of this kind from the scientific fommittee.

Such an action by IWC only shows the one-sided and extremely diased approach by a number of countries, with the 0.5 . at the head, with respect to whaling, all of which harms international cooperation in the field and also contradicts the principles of rational utilization of the resources of the world ocean...
...Although there exist full possitilities to retain whaling on scientific grounds, the actions of the opponents of whaling are in essente directed at changing the IWC exclusively into an environment protection agency (M.V. Ivashin, R.G. Borodin, "10, 1983).

Two months later the subject was raised again in the same tone.
The Soviet Union strictly adheres to the principle laid down at the International Convention on regulations of the whaling industry (1946) and the existing regulations on whaling. In these circumstances it is so much more surprising that a number of environment protection organizations accuse the USSR of violating some of the positions of the convention. Furthermore, some of them presume to have the right to check upon the actions of the USSR, as for example in respect to the utilization of grey whales (which have been killed for their own needs by the Chukotka population).
In spite of the tense situation in the IWC, the Soviet specialists, on the bas is of the present level of knowledge with respect to the various problems of biology, support the idea of rationale use of resources of whales, bearing in mind the recommendations of the Scientific Cormittee of the IWC (I.Y. Nikonorov and M.V. Ivashin, \#12, 1983).

USSR's Foreign Trade in Fishing Industry Products

As can be seen from Table 10 the share of the fishing industry products in the Soviet Union's exports in recent years has steadily declined from 0.73 of one percent in 1970 to 0.28 in 1982 . Furthermare, although exports continued to grow in absolute terms until 1979, so did the imports, so that after 1979 there has been a perceptible drop in the net exports by the industry amounting to over 50 million rubles.
Looking at the individual commodities (see Table li) we can see that the volume of fish exports dropped from 484 thousand tons in 1980 to 303 thousand in 1982, or by 59.78 while the value declined from R. 122.6 million to 89.7 or by 36.6%. During the same period the volume of exports of canned fish dropped from 91.9 million standard cans (s.c.) to 70.0 or by 30 I and this value dropped from R. 38.8 million to R. 34.2 milion or 13.4%. Exports of canned salmon dropped from 18.0 to $11.6 \mathrm{millions.c}$.or by 55 thile the
 million s.c. to 5.0 million or by 42 while the value increased from R. 17 million to R. 17.5 ailition or by 35. Exports of whale meat decreased in volume from R. 10.3 to R. 10.0 milion or by 1% while the value rose from 12,9 to 13.4 thousand tons or by 48 . Exports of fish meal dropped in volume from 22.5 thousand tons to 8.9 or more than two and one half times wile the value dropped from R.5.24 million to 2.4 , or a little more than two times. We can see therefore that in almost every case the drop in value of experts was less than in volume, indtcating that the USSR was able to raise the prices. (See Yables 11 and 12).
Table 11. Exports of Principal Comodities of the USSR fishing Industry (Value in Millions of Rubles)

Year	Fish and Fish Products V	Fish		Canmed Fish		Canned Salmon		Canned Crab		Whale Blubber		Whale Meat		Fish Meal		Caviar and Fish Eggs	
												Q	V	0	V	a	V
1950	8.1	17.1	3.2	9.6	2.6												
1960	32.6	51.6	8.2	53.5	2.6 14.8	9.19	1.9	4.5 12.0	1.4	-112	0.9	-	-	-		112	
1970 1975	83.8 157.4	244	32.3	62.9	19.0	15.2	2.4 6.2	12.0 12.4	7.7 14.6	34,600 34,100	6.3	13.5	78	4.0	0.484	199	0.9 1.8
1975 1976	157.4 157.8	491 470	91.5	98.5	35.6	14.2	8.7	$\begin{array}{r}1.4 \\ \hline\end{array}$	14.6 15.0	34,100 4,000	7.8 0.9	13.5 15.0	7.8	12.1	1.8	1,000	5.6
4977	155.3	404	89.9	98.5	35.8	17.3	10.7	6.3	13.3	1,900	0.4	18.0	4.1	17.9	3.4	2,100	6.9
1978	174.6	460	89.7 99.2	110.1	39.5	19.4	13.7	4.5	12.2	1,900	0.2	13.3	11.5	18.0	3.5	1,600	7.7
1979	209.4	474	123.8	88.5	34.1 35.9	17.8	11.7	3.9	15.0	1,100	0.3	9.0	11.5	13.6 21.4	3.1	1,400	8.1
1980	209.8	484	122.6		35.9	18.7	13.4	4.2	19.0	500	0.1	9.8	12.0	21.4	4.3	1,200	10.2
1981	191.1	374	102.6	90.6	4.8	18.0	12.1	5.2	17.0	1,000	0.3	10.3	12.9	22.5	4.4	700	13.2
1982	179.2	303	89.7	70.0	34.2	18.0 11.6	15.3	4.4	13.4	-	-	9.3	12.7	11.9	5.2	800	10.3
						11.8	10.3	5.0	17.5	-	-	10.0	13.4	8.9	2.4	1,445	12.0 13.5

Table 12. Changes in Prices of Fishing Industry Products Exported by the USSR

Year	$\begin{aligned} & \text { Fish } \\ & \text { Per T/R } \end{aligned}$	$\stackrel{x}{*}$ in P	$\begin{gathered} \text { Canned } \\ \text { Fish } \\ \text { Per } s . c . / R \end{gathered}$	Change in P	Canned Salmon Per s.c./R	\quad \% Change in P	Canned Crab Per s.c./R	8 Change in P	Whale Blubber per T/R	$\begin{gathered} \% \\ \text { Cnange } \\ \text { in } p \end{gathered}$	Whale Meat per T / R	$\stackrel{\text { Change }}{ }$ in P	Fish Meal Per T/R	$\%$ Cnange in in P
1960	159.05	100.0	0.28	100										
1970	132.66	83.4	0.30	107	0.30 0.41	100	0.64	100	182.4	100	-			
1980	253.58	159.4	0.42	150	0.68	136	1.18	184	229.2	126	199.8	100	149	100
2982	296.31	186.2	0.49	175	0.89	297	3.53	507 552	291.6	160	1,248.5	625	233	193
										-	1,332.2	667	275	227

. Satistical Yearbooks, 1960-1982. Finansy i Statistika. Moscow.

Table l0. ISSR'sforeign Trade in fishing Industry Produrts Mit. R.

Year	Total Exports	Fish. Ind. Exports	x of A	Total Imports	Fish Ind. Imports	x of B	$\begin{gathered} \text { Net } \\ \text { Exports } \end{gathered}$
1970	11,520	83.8	0.73	10,565	14.9	0.14	68.9
1975	24,030	157.4	0.66	26,669	25.0	0.09	132.4
1976	28,022	157.8	0.56	23,733	20.3	0.07	137.5
1977	33,756	155.3	0.47	30,097	33.5	0.11	121.8
1978	33,668	174.6	0.52	34,557	29.9	0.09	144.7
1979	42,426	215.9	0.51	37.881	34.1	0.09	181.8
1980	49,635	214.4	0.43	44,462	58.9	0.13	155.5
1981	57,108	199.1	0.34	52,631	55.7	0.11	143.4
1982	63,165	179.2	0.28	56,4:1	51.6	0.09	127.6

The most important importers of fish from the USSR were Japan which in 1982 took 63, 293 tons walued at R.12.4 million. Cuba took 41,962 tons valued at R. 24.4 million, Portugal 29,997 tons walued at R. 7.9 million. Egypt 21,942 tons valued at R. 8.2 million and Nigeria 18,663 tons valued at R, 4.9 million. The prices these countries paid per ton were: Japan, R.196.2; Cuba, R.582.2; Portugal, R.265.7; Egypt. R.374.4; Nigeria, R.313.5. The average price was R.296.3.

The most important importers of canned fish were Czechoslovakia which took $23,444,000$ s.c. valued at R. 9.2 million, follawed by Cuba with $13,352,000$ valued at R. 6.3 mi 11 ion, France $5,004,000$ valued at R. 3.3 million, Foland $4,430,000$ valued at R. 1.8 and Hungary $3,621,0005 . \mathrm{C}$. walued at R. 1.4 million , paying respectively: Czechoslovakia, R.0.39; Cuba, R. 0.47 ; France, R. 0.67 ; Poland, R. 0.41 ; Hungary, R. 0.40 ; with the average price being R.0.49.

The most important importers of canned crab were France, which took 2,332,000 s.c. valued at R.7.1 million, japan 1, 419,000 s.c. valued at R.6.2 million, Belgium 585,000 s.c. valued at R.1.9, Netherlands 142,000 s.c. valued at 0.4 million and West Germany 119,000 s.c. valued at R. 0.5 million. They paid respectively: France, R.3.02; Japan, R.4.33; Belgium, R.3.37; Netherlands, R.3.15; W. Germany, R.3.93; with the average price being R. 3.53 per standard can. Except for a very small amount going to Czechoslovakia all canned crab went to hard currency countries.

The USSR's imports of fishing industry products came primarily from Iceland which supplied R. 36.2 million worth out of the total R. 51.5 million imported. From Iran came R.1.7 million worth of fish and R.5.7 million worth of black caviar.

All difficulties notwithstanding the soviet fishing industry has managed to give the economy in 1982 R. 127.6 million worth of exports net, or 156.7 miliion U.5. dollars.

Internal Trade

In Table 13 are given figures of the USSR's retail trade inside the country and the position of the fishing industry products in it. As can be seen from the table, the rate of growth of the fishing industry products sales, taking 1940 as one, has been 14.53 times compared with the rise in the overall value of retail trade for the country of 13.10 times.

The share of fish products in total retail trade has declined from $3.9 x$ in 1940 to $3.4 x$ in 1982 . The share of fish in the fishing industry sales reached the peak of $60.6 \boldsymbol{z}$ in 1970 and by 1982 dropped to 52.7 x , the share of herring dropped steadily from 32 , 晈 in 1965 to $8.4 x$ in 1982 while the share of canned products of the industry grew from 9.2% in 1940 to $40.8 x$ in 1981. It dropped 2% in 1982 to stand at 38.9x. The current aim is to give the country more fresh and lightly chilled fish as against frozen, and also to provide the population with fish products packaged for individual cofsumption rather than in large containers (see Tabie 13).

Conclusion

In conclusion it can be said that the fishing industry continues to maintain its important position both at home and in terms of its contribution to foreign trade. In the future the min efforts wll be directed towards securing as mith as possible of the resources of the open oceans, even though it is recognized that to do this will require heavy investments to teprove the methods of locating and

Yeur	$\begin{gathered} \text { Total } \\ \text { Consumer } \\ A \end{gathered}$	Increase Over time	Fish \& Fish Products B	Increase Over Time	$\begin{gathered} 8 \\ \text { Percent of } \\ A \end{gathered}$	$\underset{\mathcal{C}}{\text { Fish }}$	C/B	$\underset{0}{\text { Herring }}$	0/B	$\begin{aligned} & \text { Canned } \\ & \text { Fish } \\ & \text { E } \end{aligned}$	E/B
1940	11,357	1.00	347	1.0	3.9	194	55.9	121	34,9	32	9.2
1965	60.452	5.32	2,318	6.68	3.8	1,059	45.7	761	32.8	498	21.5
1970	86,168	7.59	3,046	8.78	3.5	1,846	60.6	469	15.4	731	24.0
1975	112,729	9.93	3,743	10.79	3.3	2,249	60.0	303	8.1	1,191	31.8
1980	137,336	12.09	4,778	13.71	3.5	2,478	51.9	360	7.5	1,940	40.6
1981	142.140	12.51	4,904	14.13	3.5	2,536	51.7	367	7.5	2.001	40.8
1982	148,856	13.10	5,042	14.53	3.4	2,658	52.7	425	8.4	1,959	38.9

harvesting the riches of the sed. This will involye expenditures on new types of fishing vessels and gear.
Utilization of resources of other nations' economic zones will continue to oe another important goal to be achiewed through negotiations and cooperation in operations. Fallowing the general trend of the day, nore effort will be put into mariculture and to developing and utilizing inland water resources, but because of the clash with the needs of dgriculture and in particular with the industries, which are accorded a higher degree of priority, some lack of success in this area will be talerated.

The priority accorded to the fishirg industry will depend on how well adnimistrative problems in agricultare will be resolved and to a considerable extent on the vagaries of weather and international relations. in spite of its huge size, the Soviet Union has a limited amount ar agricultural land; only ghost 10% of the land drea, while her population continues to grow adding the equivatent of the popdlation of New Zealand every 18 months. Prowiding the popalation with food will continue to be a crallenge and there will alwas be a place for the fishing irdustry. Most important front the rest of the world"s point of wiew is that the Sowiet fishing industry will be encourdged to be aggressive in the struggle for the resources of the world's oceans.

References

1. K.A. Gekiashev, V. M. Rumiantsew. Pravovoe regulirovanie rybolowstwa vibrezhnykh vodakh SSSR (.egal reguiating of fisheries within the coastal waters of the USSR). Rybnoe kthoziaistvo. 1977, \#9, pp. 56-59.
2. Anon. Osmovnye napraylenia ekonomicheskogo i sotsiainogo razwitia SSSR na 1981-a5 gody i na period do 1990 goda (The main directions of the economic and social development of the USSR over 1981-85 and for the period up to 1990). Ekonomisheskaia Gazeta 49 , December 1980, p. 8 .
3. N.P. Kudriautsev, Ist Deputy Minister of the Fishing Industry of the USSR. Rybnoe khoziaistuo v odinnadtsatoi piatiletke (fisheries in the eleventh Five Year Plan). Rybnoe Khoziaistvo, 1981, 11 , pp. 3-7.
4. L.V. Nikonoroy - Vosproizvodstro i okhrana rybnykh zapasov (Restocking and protection of fish reserves). Rybnoe Khoziaistvo. 1982, $\mathbf{*}$, pp. 27-30.
5. N.P. Kudridutsev. op cit.
6. Anon. Prodovolstvennaia programa $\$ 55$ n ma period do 1990 goda (USSR Consumer Supplies program for the period up to 1990). Pravda. 27.V.1982.
7. E.A. Romanoy. Rybnaia promyshlennost za 60 let (60 Years of the Fishing Industry). Rybnoe Khoziaistwo. 1982, 12, pp. 3-11.
8. Ibid.
9. E.A. Romanov. Rentabelnost' produktsit i nekotorye osobennosti y napravlennosti raboty otros li (Profitability of preduction and some special features in the orientation of the industry). Rytnoe Khoziaistvo. 1983, \#12, pp. 15-17.
10. V.M. Kamentsev. Minister of the Fishing Industry, appointed in April, 1984. Plany namechennye Xxy: syezdon KPSS vypolnim (we shall fulfill the plans outlimed by the XXVI congress of the CPSU). Rybnce Khoziaistwo 1982, 12, pp. 3-8.
11. V.M. Kanentsev (at the time 1 st Deputy Minister of the Ministry of Fishing Industry). Perspektivy razitia rybnogo khoziaistva vnutrennikh vodoyonow (Prospects of developing inland waters fisheries). Planovoe Khoziaistwo. 1978, 11, pp. 9-18.
12. M.P. Kudriavtsev. op cit.
13. H.P. Sysoev. Tekhnichesti progress i razaeshchenie rybodobyvaiushchei promyshlennosti (Technical progress and the location of the fishing industry). Rybnoe khoziaistvo. isyu, $\ddagger 1$, pp. $17-\bar{c} u$.
14. E.A. Romanoy. Rentabelnost' produktsit. (See Mo. 9.)
15. 5.A. Studenetski. Prodovolstvennaia programa i zadachi rybokhoziaistvennoi nauki (Consumer Suppliers programie and the task of the fisheries science). Ryonoe khoziaistuo. 19B3, 11 , p. 3.
16. A.A. Ishkow. Otechestwennoe rybnge khoziatstvo (National fisheries Industry). Rybnoe Khozifistro. 1977, 111, pp. 3-6.
17. M.G. Ilchuk, L.P. Kuzmina, N.F. Kalishchuk, O.I. Radionova, T. W. Senko, M.G. Spitsina, L.A. Filippowich, V.Y. Chernova, Ekonomika, organizatsia i planirovamie proizuodstva na predpriatiakt ryonoi promyshlennosti (Economics, organization and planning of the output at the enterorises of the fishing industry). Legkaiai pishchevaia promyshlenmost'. Moscow. 1982, p, 303.
18. S.A. Studenetski. Drodovolstvennaia progrdmat. Op cit. (See No. 15.)
19. V.I. Ikriannikov. K itogam Ill Konferentsii 00N po morskomu prawu (On the results of the III Jiv Conference on the Law of the Sea). Rybnoe Khoziaistwo. 1993, \#5, pp. 69-54.
20. V.f. Zatisev. lspolzovanie prirodnykh resursov shelfa i ego preobrazovanie (utilization of the matural resources of the shelf and its re-shaping). Rybnoe khoziaistvo. 1978, \#8, pp. B-10.
21. A. Alekseev, L. Oushkina, L. Ryzhkov, W. 解lebovich. Postizhenie morio (Mastering the sea). Pravda 4, August 1978.
22. Ibid.
23. P.A. Motseev. Osnowne napravlenia raswitia marikultury (The main directions for the expansion of mariculture). Ryonoe Khoziaistvo. 1980, *2, po. 21-25.
24. V.M. Kamentsev. Perspektivy razvitia... op cit. (See No. 11.)
25. S.A. Patin. Marikultura v SSSR (Mariculture in the USSR). Rybnoe Khoziaistvo. 1984, \#2, pp. 22-25.
26. V.K. Kiselv. Bolshe vnimania okhrane f vospraizuodstua rybnykh zapasou (More attention nepded to the protection and re-building of fish stocks). Rybnoe khoziaistvo. 1978, \%6, pp. 3-5.
27. E.A. Romanov. 1982.12. Op cit. (See No. 7.)
28. E.A. Romanow. Rubnoe khozlaistvo v 1984 godu (Fisheries econony in 1984). Rybnoe Khoziaistvo. 1984, 11, PD. 3-7.
29. M.L. Kashintsev, Spravochnik po rybnomu khoziaistvu (Reference book on fisheries). Pishchevaia Promyshlennost'. Moscow, 1980. A review by A.I. Isaev and E.I. Karpova. In Rybnoe Khoziaistvo. 1981, \$5, p. 80.
30. W.M. Kamentsev. Perspektivy Razyitia. Op. cit. (See No, 11.)
31. Anon. Rybka iz pruda (Fish from ponds). Pravde. 11 february 1983.
32. M.V. Ivashin. R.G. Borodin. Otsenka zapasovkitoy ikh ratsionalnoe ispolzovanie (Evaluation of whale populations and their rational utilization). Rybnce khoziaistvo. 1983, \#10, pp. 31-34.
33. I.V. Mkonorov and M.V. Ivashin, O rabote Mezhdunarodnoi kitoboinoi Kommissi (On the work of the International thaling Comission). Rybnoe Khoziaistro. 1983, $12, \mathrm{p} .21$.

The New Ocean Regime: Implications for International Seafood Trade

Extended Fisheries Jurisdiction and International Seafood Trade

Richard S. Johnston and Arthur Siaway
Department of Agricultural and Resource Economics Oregon State University USA

The year 1977 will have a special place in history. By the end of that year, most of the coastal nations of the world, both developed and developing, had deciared extended fishing zones. The significance of management authorityt (Copes, $\quad 1982, p, 39$) bulk of the world's commercial fish stocks under undisputed jurisdiction by coastal states was a "...more economical use of fish resourcextension of fishery through overfishing is avoided and higher returns are obtained fish resources, in which stock depletion p. 39). Whether there were to be concomitant increases in wed per unit of fishing effort" (Copes, 2983, profitability of harvesting underexploited species and the world seafood production would depend on the currently being fished (Crutchfield, 1980).

What of the impacts of extended fishery jurisdiction on international trade in seafoods? it is tempting to predict that, even with little or no increase in production, trade would increase. After ali, prior to extended fishery jurisdiction, distant water fleets accounted for a significant portion of the world's to lead to an increased import dese fleets by the countries off whose coasts they fished could be expected by the newly-endowed coastal states. Indeed, the data support such mations and resulting export activity world harvest of fish, crustaceans, and molluscs incre support such a prediction. Between 1976 and 1982 increase of 10.5% ($\mathrm{FAO}, 1983$). During that same period sed from 69.4 to 76.7 million metric tons, an than 27x (ibid). $1 /$ Thus, world seafood trade increased more than dide, on a volume basis, rose by inore addition, the world's leading distant-water fishing ned more than did world seafood production. In period, while significant increases in landings were posted by a number harvest reductions during the (

Here, then is a major development with potentially important impacts on worldwide economic activity, including international trade. This paper examines the hypothesis that extended fisheries jurisdiction (efj) has led to an increase in international seafood trade at both global and national levels. The laboratory for the latter is the United States. Discussion of the underlying thecretical issues appears in the Appendix. The alternative hypothesis is that, while there have been significant developments in internat world seafood trade since the advent of efj, these developments may have had more to do with overali world economic conditions than with territorial changes in the oceans.

Extended Fisheries Jurisdiction and Global Seafood Trade

To determine whether the extension of fisheries jurisdiction during the mid-1970s generated an increase in international seafood trade, a relatively simple model was developed in which it was hypothesized that, over time, seafood trade has been positively related to world landings, efj, and global economic. conditions. The rationale for the last nypothesjzed relationship is that factors which increase or decrease economic activity in total will have a similar effect on trade, including seafood trade. In the

Special thanks are due Susan Hanna and Bruce Rettig for helpful comments on an earlier draft and to Mary Brock for computational, typing, and editorial assistance. Earlier versions of this paper were presented Annual Seminar of the University the International Council for the Exploration of the Seas and the Eighth participants in these conferences are very much Center for Ocean Law and Policy. Suggestions by sponsored, in part, by the oregon state Sea Grant, U.S. Department of Commerce, under Grant Mumbant College Program supported by NOAA Office of Sea Grant, U.S. Department of Commerce, under Grant Number MA81AA-D-00086.
presence of an economic recession, for example, it is likely that demand for seafood will fall, with a commensurate decline in both imports and exports.

To test these hypotheses, the following equation was estimated via ordinary least squares:

$$
\begin{align*}
& W T=\underset{(2.15)}{62737.2} \underset{(-2.09)}{452.93} \mathbf{(- 2 . 0 9}+\underset{(3.02)}{.004} \text { (WL)(GDP) } \\
& -\underset{(-4.16)}{7796.12} \mathrm{~B}_{1}+\underset{(2.32)}{288.59}(\mathrm{GDP})\left(\mathrm{B}_{2}\right)-\underset{(-2.01)}{52536.60} \mathrm{~B}_{2} \tag{1}
\end{align*}
$$

where $W T=$ world trade in fishery products, on a live weight equivalent basis, in 1000 metric ton units.
$G \mathrm{GP}=$ index number for world gross domestic product, where $1963=100$.
W. $=$ world landings of aquatic organisms, in 1000 metric ton units.
$B_{1}=$ binary variable assuming the value unity for 1970-1982 and zero for 1950-1969. This variable was included to account for a change in the way marine mammals and aquatic plants were reported by the FAO.
$\mathrm{B}_{2}=$ binary variable assuming the value unity for 1950-1976 and zero for 1977-1982, the "ef j variable."
and t statistics appear in parentheses.
This particular functional form was selected, in part, because preliminary analysis uncovered a high degree of collinearity between $W L$ and GDP. In addition, this specification permits B_{2} to serve as both a shift variable and as a determinant of now changes in global economic conditions would affect world seafood trade. (In terms of the production possibilities eurves of Appendix A, this specification allows for a shift in the curve and a change in its slope.)

Data were yearly for the period 1950-1982 and principal data sources were annual volumes of the U.N. Statistical Yearbook and the FAO Yearbook of Fishery Statistics. The R^{2}, F, and Durbin-Watson statistics for the above equation were . $92,58.2$ and 1.09 , respectively. //

The estimated coefficients suggest a positive relationship between seafood trade and fish landings, as expected. The results also suggest that seafood trade and global economic activity (GDP) are affected by similar factors but that this relationship changed with the increase in extended fisheries jurisdiction. In particular, the results suggest that:

$$
\begin{aligned}
\frac{\partial W T}{\partial G D P} & =-452.93+.004(W L)+288.59\left(B_{2}\right) \\
& =-452.93+.004(W L)+288.59, \text { for the years before } 1977, \text { and } \\
& =-452.93+.004(W L), \text { for the years } 1977-1982 .
\end{aligned}
$$

At the mean value of WL (52,500 thousand metric tons)

$$
\begin{aligned}
\frac{\partial W T}{\partial G O P} & =45.66, \text { for } 1950-1976 \\
& =-242.93, \text { for } 1977-1982
\end{aligned}
$$

Thus, it appears that international seafood trade and global economic activity were positively related before the plethora of extended fishing zones in the 1970s, after which the relationship became a negative one. However,

$$
\frac{\partial h T}{\partial B_{2}}=288.59(G 0 P)-52536.60 .
$$

which is 4604, a positive number, calculated at the 1977 level of GDP. $\frac{3}{}$ / This result suggests that extenced fisheries jurisdiction has been associated with decreased levels of international seafood trade. Another interpretation is possible, however. When $\frac{\partial W T}{\partial B_{2}}$ is calculated at the mean level of $G D P$ for the entire 1950-82 period ($\overline{G D P}=128$, approximately the 1967 value), its sign is negative, suggesting that, had efj occurred earlier, it would have been associated with increased seafood trade,

This highlights one of the difficulties of using time series data to uncover the influence of a variable which is collinear with other key explanatory variables. At the time of efj, world landings of aquatic organisms were increasing. At the same time, economic expansion was occurring globaliy, perhaps masking any influence of extended fisheries jurisdiction on international seafood trade. The somewhat surprising, albeit tentative, finding of a dampening effect of efj on trade could be the result of exporting nations experiencing reduced harvest opportunities and importing nations finding expanded harvest opportunities. Had efj occurred earlier, it could have had a positive effect on trade because of different trading posftions of the affected nations. Studies of the impacts of public policies of ten abstract from the time of policy implementation. Here is a case wnen timing may have been important because the policy change took place when trading relationships were being realigned.

A Simultaneous Equations Approach

In the discussion to this point it has been assumed that the relationship between seafood trade and global landings is causal in one direction. However, it could be argued that both the decision to fish and the decision to engage in seafood trade are made in response to similar economic signals. If so, this calls for another approach to uncover economit relationships. In particular, it suggests the need to specify a model which recognizes the interdependence between seafood trade and landings of aquatic organisms.

To estimate the parameters of such a model, a simultaneous equations procedure, two-stage least squares, was used to estimate the following equations:-4/

$$
\begin{equation*}
-322.93 \mathrm{~B}_{2} \tag{3}
\end{equation*}
$$

$$
(1075.37)^{2}
$$

where B_{3} is a binary variable introduced to account for an apparent structural change which may have occurred in 1972, $5 /{ }_{t-1}$ stands for world landings in the previous year, and all other variables have their earlier definitions. Figures in parentheses are calculated standard errors.
The reduced form equation for $W T$, estimated via ordinary least squares, ${ }^{6 /}$ is
where the figures in parentheses are t-statistics, and the R^{2}, F, and Durbin-Watson statistics are 99 , 1573.6, and 2.30 respectively. The results are consistent with the earlier findings, although a somewhat different interpretation emerges. From equations (2), (3) and (4) it appears that the direct influence of efj, represented by 8_{2}, on seafood trade depends upon the assumed levels of world landings and GDP. I/ Had efj occurred before 1958 ($1 . e$. , had W, and GOP been at their pre-1958 levels) the infleence would have been negative. For the $1958-76$ period, the effect would have been positive.

Hower, inspection of the estimated coefficients in equation (4) reveals that, when the interdependence between landings and trade is considered, permitting efj to offect world trade both directly (equation (2)) and through landings (equation (3)), the "net" effect is negative. That is, the results suggest that, no matter when ef j occurred, it would have had a dampening effect on world seafood trade.
The coefficient on the "structural change" variable, $B_{3}, \frac{8}{\prime}$ in equation (4) suggests that, whatever occurred in 1972, it had a dampening effect on global seafood trade, although the reason for this may lie in how landings and trade are related to each other. Consioer, for exanple, the estiaded relationsitip between $I T$ and H. According to equation (2) international seafood trade is positively related to morld landings. Equation (3), however, suggests that world landings are negatively related to seafood trade and positively related to lagged values of landings. A possible explanation for this is that, as opportunities to participate in international trade increase, there is expanded pressure on the fishery resource, leading to a decline in yields. On the other hand, if landings do increase, so witl trade.

$$
\begin{align*}
& +\underset{(3181.17)}{684.71} \mathrm{~B}_{3}-\underset{(3.28)}{8.74}(\mathrm{WL})\left(\mathrm{B}_{2}\right)+\underset{(989.40)}{2548.56}(\mathrm{GDP})\left(\mathrm{B}_{2}\right) \tag{2}\\
& W L=\begin{array}{l}
-2561.98 \\
(3887.58)
\end{array} \underset{(.44)}{.58} \mathrm{WT}+\underset{(.22)}{(.30 \mathrm{WL}} \mathrm{t}-1-\underset{(2026.04)}{3731.38} \mathrm{~B}_{\mathrm{I}}
\end{align*}
$$

Thus, the 1972 structural change appears to have expanded trade, which in tum dampened landings and, eventually, reduced trade. The "net" effect is a negative relationship between the 1972 structural change and seafood trade. The issue requires further study, including the impact of B_{3} on $\mathrm{WL} \mathrm{t}-1$. What about the relationship between global seafood trade and international economic conditions? As before, the results suggest that, had efj not occurred, the net effect of a change in $G 0 p$ would have been a change in world seafood trade in the same direction. Extended fisheries jurisdiction appears to have changed the relationship to a negative one. This could be the result of fish importing nations becoming in the appendix).

While there may have been an impact of ef j on total world landings, this impact has not been uncovered by the present analysis. World landings did increase over the 1977-82 period; it is not apparent, however, that this growth differs from the pre-efj rate. However, efj does appear to have affected global seafood trade, perhaps through a reallocation of property rights in the world's fishery resources.
These results are highly tentative. Furthermore, they are somewhat mixed. Statistical estimation is hampered by multicollinearity. The most one can conctude from this exercise is that, while global seafood trade has increased in recent years, it cannot be concluded that this is a result of extended
fisheries jurisdiction.

For any given country, however, this may not be the case. In the next section, discussion focuses on one country, the United States, and the impacts of that country's extended fisheries jurisdiction on its own

Extended Fisheries Jurisdiction and U.S. Seafood Trade

One objective of the Magnuson Fisheries Conservation and Management Act of 1976 ("the Magnuson Act") was "to achieve full domestic utilization of the marine fishery resources available for U.S. exploitation, including those resources not under U.S. Jurtsdiction" (Gordon). The extension of the U.S. fishery U.S.

With the declaration of the Magnuson Act it would not have been unreasonable to anticipate increased domestic landings and, thus, either less reliance on seafood imports or increased export activity by the U.S., or both. In fact, what has happened? The average annual harvest by U.S. commercial fishermen during the three years immediately prior to the MFCMA was 5 billion lbs. By 1980-82 this figure had increased to 6.8 billion lbs., an increase of over thirty percent. The dollar value of fishery exports (measured in 1972 dollars) rose from an average of $\$ 251 \mathrm{million}$ to one of $\$ 552 \mathrm{million}$, an increase of over 120% over the same period! ${ }^{9 /}$ on the import side, the dollar value also rose, from a $1973-75$ average increase of 38%. Thus, $1980-82$ average of $\$ 2,126 \mathrm{milli}$. On a per-capita basis, this represented an significantly, lending support to the hypothes is that of the period, exports have increased even more jurisdiction has led to increased export for imports.

A closer look at the data suggests the need for caution in attributing changes in trade activity to extended fisheries jurisdiction, however. A comparison of trends in the seafoods sector with trends in other sectors displays some remarkable similarities. $10 /$ Indeed, both imports and exports show the following pattern over the 1962-82 period: relatively steady growth between 1962 and 1971, rapid growth (with some evidence of recovery in late 1983).

Of particular interest to the authors was the "take-off," beginning around the time at which the Magnuson Act was passed, in both imports and exports. Certainly there has been a substantial increase in the volume of U.S. salmon exported since 1976. Much of this can be attributed to the Magnuson Act, which strengthened the ability of the U.S. to control the interception of North American salmon by the Japanese distant water fleets. One result has been increased salmon landings by U.S. fishermen and concomitant increases in exports to Japan. With respect to groundfish, the U.S., a net importer, has increased domestic andings. Through various joint venture arrangements, this has been accompanied by expanded increased substantially since 1976. On the other hand, imports of all groundfish, taken together, have

What is going on here? In a recent article, McCalla argues persuasively that agricultural trade is importantly affected by international monetary policy. He further argues that, especially since the early 1970s, following the movement to a more flexible exchange rate system, global econcanic conditions have resulted from foreign government responses to real interest rates, the strength of the U.S. dollar, and its role as a reserve currency. This allows him to explain the worldwide inflations of $1973-74$ and 1979-80, as we 1 as the $1975-76$ and 1981-82 recessions. These have been accompanied by incone and price
fluctuations in the

It is unlikely that seafood markets are immune from such changes in worldwide economic conditions. limitations preclude the development of an econometric model to separate roles of macroeconomic, microeconomic, and property rights changes in seafood trade but some preliminary andysis merits consideration. Table l contains estimates of the following relationship:

$$
\begin{equation*}
Y=1_{0}+a_{1} X+n_{2} M \tag{6}
\end{equation*}
$$

where Y represents U.S. exports of f ishery products, X represents U.S. exports of agricultural products, and M is a binary variable designed to capture the possible impacts of the Magnuson act (M) 0 for 1961-77 and 1 for 1978-82. Implementation of the Act did not occur until 1977 and it was hypothesized that resulting effects on trade would not appear until the following year.). Various versions of this equation were specified. For example, a similar equation was estimated for U.S. imports of fishery products, with X then representing U.S. imports of agricultural products. Other modifications included specification of x as U.S. imports or exports of all merchandise (as opposed to agricultural products). Finally, separate equations were estimated for "edible" and "edible plus non-edible" fishery products.

The reasoning underlying the model is as follows: it is unlikely that either the agricultural or the "all commodities" sectors of the 1.5 . economy have been directly affected by the Magnuson Act. If seafood imports and exports can be "explained" by changes in the non-seafood sectors of the economy, with little "left over" to be attributed to the Magnuson Act this would suggest that recent macroeconomic (and, perhaps, microeconomic) events may have swamped any effects of extended fisheries jurisdiction on seafood trade. Clearly the model is naive, in that it does not permit the uncovering of cause and effect relationships. Nonetheless, the results are instructive. $11 /$
The first four equations of Table 1 , which pertain to seafood exports, suggest a strong relationship between U.S. exports of fishery products and export activity in other sectors of the economy. These equations also suggest, however, that the Magnuson Act may, indeed, have had a positive effect on U.S. seafood exports.

In the last four equations of Table 1 , which pertain to seafood imports, the results are somewhat mixed. U.S. Seafood imports are related to imports of other goods, both agricultural and non-agricultural. However, the effect of the Magnuson Act on seafood imports is less clear. Part of the difficulty may lie in the collinearity between the two "independent" variables in the estimating equations, although for no equation in Table 1 was the calculated r^{2} value in excess of .65 .

Inclusion of a variable to represent annual $U .5$. landings of fish and shellfish had little effect on the magnitudes of the estimated coefficient. $12 /$ For all of the revised export equations (1-4) the estimated coefficient on the landings variable was negative. For the import equations it was negative for equations 6 and 8 ; positive for 5 and 7 . For the export equations the calculated t-statistic ranged from -1.34 (equation 4) to -2.13 (equation 1). For equations 5-8 the standard error consistently exceeded the estimated coefficient. Thus, inclusion of the landings variable does not affect the conclusion: U.S. exports of seafoods have been affected by general economic conditions and by the Magnuson Act. The relationships between seafood imports and imports of non-seafood items joes not appear to have been affected by extended fisheries jurisdiction. 13/

Conclusions

Both global trade in seafoods and U.S. exports of seafoods have very likely been affected by both worldwide economic conditions and harvesting opportunities afforded by extended fisheries jurisdiction. This is suggested by a preliminary analys is of aggregate trade data. At the global level, however, the impact of efj seems to have been a negative one. A downard shift in the relationship between trade and its determinants accompanied efj, according to the present analysis. In addition, the impact on trade of changes in worldwide economic conditions appears to have changed with efj. Prior to 1977 , increases in global GDP were associated with increases in seafood trade among the countries of the world. After efj this relationship appears to have changed to a negative one. Because of statistical problems with the analysis, it is probably safest to concluce simply that there is not sufficient evidence to support the hypothesis that recent increases in global seafood trade can be attributed to extended fisheries jurisdiction.
L.S. trade in seafoods has no dcubt also responded to changes in landings and economic conditions. Again, the role of extended fishery jurisdiction is not clear. Perhaps it is too soon for this role to have shown itself. Nonetheless, it appears reasonable to conclude that any attempt, either conceptual or empirical, to understand the relationship between seafood trade and the changing ownership of the sea will have to consider macroeconomic factors as well. This finding, while not particularly surprising, suggests some challenging research and points to the need to recognize the interdependence between the seafood sector and its non-seafood counterpart.

Table 1. Estimates of J.5. Seafood Import and Export Equations.

Equat ion number	Dependent Variable	Constant Term	EXAG	$\frac{E s t \text { imate }}{X R E R L}$	$\frac{d \text { Coeffi }}{I A G}$	$\begin{aligned} & \text { ic ients for } \\ & \text { :REALL } \end{aligned}$	M -	Adjusted R^{2}	Ourbin Wiatsc Stat:stics
1	EFPR	$\begin{aligned} & -44943 \\ & \{-1.55\rangle \end{aligned}$	$\begin{aligned} & 15857 \\ & (6.38) \end{aligned}$				$\begin{aligned} & 258848 \\ & (7.46) \end{aligned}$. 94	1.50
2	EFPR	$\begin{aligned} & -50208 \\ & (-1.80) \end{aligned}$		$\begin{gathered} 3.41 \\ (6.92) \end{gathered}$			$\begin{array}{r} 213691 \\ \{5.65) \end{array}$. 95	1.53
3	USEXR	$\begin{aligned} & -36444 \\ & (-1.37) \end{aligned}$	$\begin{aligned} & 17868 \\ & (7.80) \end{aligned}$				$\begin{array}{r} 258434 \\ (8.07) \end{array}$. 96	1.46
4	USEXR	$\begin{aligned} & -38385 \\ & (-1.42) \end{aligned}$		$\begin{gathered} 3.76 \\ (7.78) \end{gathered}$			$\begin{array}{r} 212219 \\ (5.80) \end{array}$. 96	1.48
5	IFPR	$\begin{aligned} & -374273 \\ & (-2.00) \end{aligned}$			$\begin{aligned} & 195910 \\ & (7.04) \end{aligned}$		$\begin{aligned} & 130905 \\ & (1.21) \end{aligned}$. 84	0.80
5	1FPR	$\begin{aligned} & 355081 \\ & (6.33) \end{aligned}$				$\left(\begin{array}{l} 11.15 \\ (11.34) \end{array}\right.$	$\begin{aligned} & -234990 \\ & (-2.48) \end{aligned}$. 93	1.41
7	USIR	$\begin{aligned} & -377094 \\ & (-1.63) \end{aligned}$			$\begin{aligned} & 227339 \\ & (6.61) \end{aligned}$		$\begin{aligned} & 450965 \\ & (3.36) \end{aligned}$. 87	1.01
8	USIR	$\begin{aligned} & 463175 \\ & (6.60) \end{aligned}$				$\begin{aligned} & 13.06 \\ & (10.62) \end{aligned}$	$\begin{aligned} & 169400 \\ & (0.14) \end{aligned}$. 94	1.62

Variabl	e Definitions and Means	$\begin{gathered} \text { Mean } \\ (1961-1982) \end{gathered}$
EfPR	U.5. exports of edible fishery products in real terms	219640
USEXR	U.5. exports of edible and nonedible fishery products in real terms	2541410
IFPR	U.S. imports of edible fishery products in real terms	1058910
USIR	U.S. imports of edible and nonedible fishery products in real terms	1353970
EXAG	U.S. exports of agricultural conmodities in real terms	12.98
XREAL	U.S. exports of all merchandise in real terms	64950
IAGI	U.S. imports of agricultural commodities in real terms	7.16
IREAL	U.S. imports of all merchandise in real terms	67937
M	Binary variable assuming value 0 for years 1961-1977 and 1 otherwise	
All val	UE figures mere deflated by the GNP deflator ($1972=100$).	

Data Sources: Mational Marine fisheries Service, Fisheries of the United States, various volumes u.S. Government Printing Dffice, Economic Report of the President, various vulume:

Mote: t-ratios are in parentheses beneath the estimated coefficients; all regressions were estimated with annual data for 1961-1982.

Footnotes

1. These figures pertain to the 158 countries covered by the fao data. While there are aggregation problems associated with usirg product weignt in measuring trade volume, they are probably less severe than those associated with the corresponding walue figures.
2. Caution must be used in interpreting these results. There is still scme milticoilunearity present, especially arong SDP, (WllGDP) and B_{1}. Indeed, the equation estimated tu correct for
autacorrelation (as sugqested by the relatively low value of the rurtin-watson statistic) generatef lower estimated t-stat istics, although the signs on the cuefficients were retained.
3. Recall that B, assumes the value "i" far the pre-efj period. Thus the estimated effect of efj on WT, taken in isolation, is a negative one.
4. Equation (2) differs from equation (l) because it was expected that wo stage least squares would reduce the effects 0° collinearity between hit and GDP.
5. This was uncovered through an inspection of the ratio of trade to landings and may be tne result of changes in oil prices, currency realignment, or shifts in the wor* money gupply. See Mccalla.
6. Rather than througn solution of structural equations (2) and (3). The resulting tytimated parameters are urbiased, though less efficiant (asymptoticaily) than those derived through solving (2) and (3) simultaneously. See Kennedy, 4.122.
7. $\frac{. W T}{\mathrm{~B}_{2}} \frac{5}{3} 0$ as $\mathrm{WL} \frac{\geq}{6} 10.0095+291.6 \mathrm{BDP}$, from equation (2).
8. A variable added to give a name to our ignor ance.
9. These figures include direct sales by $J . S$. fishermen to foreign processors bat exclude deliveries by U.S. fishermen to foreign ports.
10. See Jannston for 3 more thorough discussion of the issue.
11. Annual data for 1961-82 were used in the analysis.
12. Exceptions were equations (5) and (8), where the zoefficient on variable M were cut by approximately 50%.
13. Susan Hanna correctly points out that this analysis considers only extended fisheries jurisdiction by the ! $4 . S$. and that the relat ionship may have been affected by extended fisteries jur isdiction el sewthere.

References

Anderson, Lee G. 1977. The Economics of Fisheries management. Baltimore, Maryland: The Joms Hopkins University Press.

Batra, Raveendra N_{A}. 1973. Studies in the Pure Theory of Internationd Trade, New York, St. Martin's Press.

Chacholiades, Wiltiades. 1973. International Trade Theory and Policy. Mew York, MciGraw-Hill.
Chen, Tzy-Ming and Darrell L. Hueth. 1983. "Welfare Considerations in the Developnent of a Joint Venture Policy." In Proceedings of the International Seafopd Trade Conference, pp. 461-471, Fairbanks, Alaska Sea Grant College Program.

Copes, Parzival. 1982. "Optimizing the Use of Ocean Fish Resources in the Context of Extended National Jurisdictions." In H.E. English and Anthony Scott (eds.), Renewable Resources in the Pacific, pp. 33-48, Ottawa, Intenational Development Research Center.

- 1983. "Extended Jurisdiction and its Effect on World Trade in Seafood." In Proceedings of the International Seafood Trade Conference, pp. 27-41. Fairbanks: Alaska Sea Grant College Progran.
 Economic Review 69(2):266-271.
* 1980. HMarine Respurces." In Susan Hanna et al. (eds.). Conflict in Use of Ocean Resources, pp. 39-53. Corvallis: Oregon State Uniwersity Sea Grant College Program.
Crutchfield, Stephen R. 1983. Estimation of Foreign Willingness to Pay United States Fishery Resources: Japanese Denand for Alaska Pollock, Land Economics, February, pp. 16-23.

FAO, Fish Utilization and Marketing Service, Fishery Endustries Division. i933. wisthery Eammaity Situation and 0utlook 1983/83." FAC Fisheries Circuiar (/60):390. Rome.

Gordon, Wilitam G. 1934 . "Long Range Objectives in Managenent. " Presented at the : ighth Annuai Seminar of the Genter for Oceans i, aw and Policy, Lniversity of Virginia.

Hayes, Robert G. 1982. "Yisheries Trade: The Trade Establisnment." In Proceectings of the International Seafood irade Conference, pp. 331-340, Fairbanks, hlasaa Sea Grant Colpge yroqram.

Johnston, Richards. 1984. "Status and Frends in Seafood Frade." Presented at Ene Eighth Anmual Seminar of the center for Oceans : aw and Policy, Jniversity of Wrginia.

Kaczymski, Wlad. 1993. "Market Aspects of the Joint Fishing Ventures in the Northeast Pacifir and Alaska Waters." 1 ri Proceedings of the International Seafood Trade Conference, pp. 36:-379. Fairbanks, Alaska Sea Grant College Frogram.

Kennedy, Peter. 7979. G Guide to Econometrics. Cambridge, Massachusetts: The MIT Press.
NcCalla, Alexf. 1992. "Impact of Macroeconomic Policies Upon Agricultural trade and International Agricultural Development." American journal of Agricultural Economics 64(5):86:-868.

Stokes, Robert L. 1981. "The New Approach to Foreign Fishing Allocations; An Economic Appraisai." hand Economics, Nowember, pp. 568-582.

Wilson, dames R. 1983. "Theoretical and Empirical Considerations of wor ldwice Ocean Resource Lone Extensions and the Effects on Export Market Shares of Seafood." in Proceedings of the lnternational Seafood Trade Conterence, pD. 427-446, Fairbanks, Alaska Sea Grant College Frogram.

Appendix

A Diagrammatic Exposition of the Effects of Increased Availability of Fish on Trade

In Figure A-1, pp represents the production possibilities for two goocs, f (fish) and G (othery, in a two-good world, prior to extended fisheries jurisdiction, for given country, say, the brited ctates. To abstract from the open-access phenomenon it is assumed that the fishery hids been "rationalized." This begs one of the central questions of fisheries economics but does littie damage to the argorient. For further discussion see Anderson (126-140) and Wilsom.) For diagramatic simplitity is is assumed that the forms in which G and F are produced are the same as those in which they are consumed. Gonsumer preferences are represented by "comunity indifference curves," as exemplified by U_{1}, U_{2}, U_{3}. At
relative prices given by the slope of m, the U.S. produces at point x and consunes at point i. That is, at this set of relative prices, the U.S. is wiling to export of units of F and import ox units of G. A, different prices (different slopes of mat, the $v .5$. is willing to engage in aifferent trages. In figure A-2, this is expressed through Hoffer curves, ${ }^{4}$ which depict the U.S.'s willingness to trade at various relative prices (now given by the slopes of straight lines emanating from the origind. Thus, as before, at relative prices given by the slope of $O \boldsymbol{N}$ (which are equivalent to those given by the slope of win Figure A-l) the U.S. is willing to export ox units of F and import or units of G. At lower relative prices of F (a steeper ovi, the $J . S$. is willing to export less F. Indeed, at low enough prices of F the U.S. may switch to being an importer of F and exporter of G. Suppose a similar set of offer curues can be drawn for the rest of the wor ld and that free market conditions prevail. In Figure $A-3$, the "dotted 4 lines are the offer curves for the rest of the world (ROW). They are assumed to differ from those of the U.S. because of different production possibilities, different preferences for F and G, or both. In the situation depicted, the U.S. imports oy' units of G from and exports $0 x^{\prime \prime}$ units of F to the rest of the world. in equitibrium.

Now suppose that, following the declaration of extended fisheries jurisdiction (efj), the production possibilities curve for the U.S. shifts to PP', as in Figure A-4. If this shift is such that, at given levels of F, the slope of $P P$; is greater than the slope of $p P$ (representing a lower marginal cost for each level of F;, the U.S. will be milling to export more F and import more G, at given relative prices. than before efj. $\frac{1 / \text { In Figure } A-4, ~ M ' M * ~ i s ~ d r a w n ~ p a r a l l e i ~ t o ~ M ~ a n d ~ t a n g e n t ~ t o ~ p p . ~ E x p o r t s ~ o f ~}{F}$. and

 change in the offer curves of the rest of the world (an untenatite assumption, made here only for expositional convenience. Relaxing tt would strengthen, mot meaken, the argument), this would lead to increased trade with the rest of the world, as demonstrated in Figure A-5, where, for the new equilibrium, the U.S. exports 0×1 '" (greater than OX') of F and imports oy"' (greater than oy') of G. Thus, it appears that fish exporting nation whica experiences a shift tn its production possibilities curve similar to that depicted in Figure A-4 is likely to increase its flsh exports. Accordingly, wor la seafood trade increases.

Figure A-1

Figure A-2

Figure A-3

Figure A

Figure A-5

Figure A-6

Some useful extensions follow from this analysis:

1. A fish importing nation which experiences a shift in its production possibilities curve similar to that depicted in figure $A-4$ is likely to decrease its imports of F (and decrease its exports of G). This would lead to a decrease in world trade. It is also possible, however, that such a country could become a fish exporting nation and, in the extreme, that this could lead to an increase in international seafood trade. This may lie behind the recent growth in world seafood trade in excess of the growth in landings, at least in part (see the discussion in the introduction to this paper). Such a situation is depicted in Figure A-6, where the offer curves of the F-importing "nation" (ROW), rather than those of the F-exporting nation, are assumed to shift with efj. The new offer curves could have a number of different configurations, leading to a variety of equilibrium trading situations. In the particular case depicted in Figure A-6, the U.S. has shifted from being an exporter of F (of $0 X^{\prime}$) to being an importer of F (of $0 x^{\circ}$). Total world trade in fish has increased (from $O X^{\prime}$ to $0 x^{\circ}$) while, in this case, total world trade in G has decreased (from oy' to oy'). $\underline{2} /$ Again, it is important to point out that this is only one of several results, the nature of which depends upon the characteristics of consumer preferences in the trading countries, the pre-efj production possibilities curves, and the nature and magnitude of the shift in the latter.
2. All bets are off if (a) F (and/or G) is an inferior good, (b) the shift in the production possibilities curve is such that the MC of F does not decline for all levels of F, or (c) both. In such cases, trade could increase, decrease, or remain the same. The issue, then, is an empirical
3. These are circumstances in which a shift in the production possibilities curve of the f-exporting nation is such that this country is worse off in the post-efj period than before. This is the case of immiserizing growth (see Batra, chapter 6) and is depicted in Figure A-7. Here, the post efj equilibrium terms of trade (specifically, the slope of M'M, and the slope of M, both of which, in this diagram, are assumed to represent equilibrium terms of trade) represent a decrease in the relative price of F which is large enough to place this country on a lower community indifference curve.

In Figure $\mathrm{A}-7, \mathrm{U}_{1}$ represents a lower level of community satisfaction than does U_{2}. In the words of one analyst, "It is possible for this deterioration in the terms of trade to be so large as to outweigh the physical increase in output and leave the country worse off than before" (williamson, 3. 284). It has been pointed out that this situation can be "corrected" by the imposition of an "optimum tariff," by the F-exporting country (Batra, Chacholiades). In the case of a fishery, however, there are other alternatives. If the fishery is unexploitec, it may appear to be in the interest of the F-exporting country to forestall utilization of the resource. If the f-importing nations (who, in this case, would be made better off by encouraging exploitation) saw this as a foregone opportunity, they might be willing to "bribe" the exporter to increase its production (e.g., through subsidy programs, which is tantamount to offering improved terms of trade), or they might be willing to pay for the right to harvest the resource themselves.
4. In the case of an F-importing country, it is possible that, while an increase in its production possibilities would increase domestic well-being, allowing another country to exploit the resource, and charging for the right, would generate even greater domestic gains. This is especially likely in the case where the costs of exploitation by another nation are lower than those of the domestic country (As may already have been demonstrated by the presence of distant-water fleets in the waters now included in the domestic country's efj zone.). For exanaple, the production possibilities curve may shift out even further in some sense, for other countries then for the country whose boundaries are increased by efj, if the former are given access to the efj waters. Payments for this right could take the form of a user fee (Stokes, Stephen Crutchfield), or a less direct payment, as exemplified by the U.S. "Fish and Chips" policy (Hayes). An analogous rationale may lie behind the plethora of joint venture arrangements now seen worldwide (Chen and Hueth, Kaczynski).
What seems to be clear is that, while existing models of international trade can provide some guidance in understanding the impacts of efj on seafood trade, the world's fisheries have some unique attributes which merit more detailed analytical and theoretical treatment.

Appendix footnotes

1. This may not be the case if G has the properties of an inferior good.
2. The equilibrium terms of trade have changed also, with a decrease in the relative price of F.

Figure A-7

Extended Jurisdiction, Factor Mobility and Seafood Trade

James R. Wilson
National Marine Fisheries Service
Juneau, Alaska, USA

Abstract

Introduction dith passage of the Magnuson Fishery Conservation and Management Act (MFCMA), there has been considerable speculation on what the far-reaching impacts of implementing such a law might be in the United States, of particular inportance has been the possibility of positive trade effects resulting from the assertion of stronger property rights. The expectation has been that, with graduat removal of foreign fishing effort in the l. S. Fisheries conservation Zone (FCZ), the trade averues awalable to the United States would be more evident. Howewer, recent written testimony by tre Commerce bepartment, reports, "the decade past has been one of forced acjustment to new patterns ififisining and in trade" [International Trade staff keport B4-3]. The report goes on to say that in: 971, fishery imports totalled just over 1 billion dollars, while exports totalled 139.245 milion dollers. However, if joint ventures are ignored, an impressiwe export expansion appears to be slow in coming, and the year : 983 had the largest deficit on record for seafood trade (4 billion dollars), despite exports of just over l billion dollars. Table I lists the yearly trade accounts for the U.S. in fisheries products.

Table 1. The Yearly Trade Accounts for U.S. Fishery Products, 1971-1983, in Thousands of Dollars

Year	1mports	Exports	Qeficit
1971	1,704,201	139.245	934,956
1972	1,494,411	157,888	1,336,523
1973	1,583,133	299,168	1,283,965
1974	1,710,878	262,132	1,448,746
1975	1,637,099	304,729	1,332,370
1976	2,332,345	384,690	1,947,655
1977	2,662,191	520,496	2,101,695
1978	3,076,564	905,534	2,171,030
1979	3,811,052	1,082,366	2,728,686
1980	3,648,082	1,006,154	2,641,928
1981	4,086,995	I,156,995	2,930,000
1982	4,467,013	1,045,303	3,421,710
1983	5,088,527	1,008,684	4,079,843

[^2]the production of fith. Indeed, for firms based th some countries which suffered a Toss in available fishing area, the relative oroductivity of some of their inputs those factors which had beer used in distant water fishing. has declined. This was due to reduced access to ocean area.

Ihe MFCMA was reasonably literal in giving consideration to those foreign fishing ations experiencirg hardships due to rapid decrease in prine fishing grounds. However, the ohvius irten: a mpoma has tee to minimize, and eventally to exclude foreign fishing involvement within zComiles. ar ar apparent response to HECMA , there have been some areas (specifically flaska, which have experierter widespred foreign direct investment in processing. In addition, the fisheries ranagerint wocess in these areas closely monitored and lobbied by foreign interests apparently prepared to go to great iengtins to maitait their foreign directed allocations. Some other countries have taken adyatitage of a new type of cooperative fishing arrangement - joint ventures. All of these phenonent, whict becare iroresingly obvious from the mid-l970s onward, strongly suggest that product:ve factors are being jnvested in countries which have experjerced net gains in ocean resource zones. The process has beed further accelerated by the recent "fish and chips" amendment to the MFCMA, since, row, allocaticris by the state department to foreign fisheries are contingent on technology transfer and joint venture activity hetween which affects fish allocations. Also, relaxation of trade barriers to L'.S. products is anocher "chiv,'

A theoretical issue addressed in this paper is: Given the U.S. laws forbidding use of foreignimade hull in domestic fisheries, it is expected for some fisheries, such as the groundfish fis?ery in Alaska, that joint ventures will persist as an option to domestic directed groundfish fisheries because foreign hulls themselves are not easily traded. $1 /$ In a sense, trade in seafood is expanding, but it is occurring within the context of production, which uses factors from different countries. For example, lator and be closed, if some other process which allows producers to take advantage of fishing grounds that would capabilities, they may be willing to used. Since the host country may not have the same labor-capital factors for producing fish products) for these factors from outside. This trade of "effort" (productive physically mobile factors to the host country product could arise from the inability of countries to sell production and trade expansion of fish products. U.S., in cases presented here) for use in the the visiting country's seafood trade position over a present situation contributes to the maintenance of theoretical results will be presented which over a more extended period of time. Within this paper, results will be derived under the assumption of an open ase observations described above. Further, the area) redistributed between two countries. In this apen access resource with one productive factor (gcea although it is not unique.

Given the above theoretical condition, it might well be asked whether empirical examples exist where extended jurfsdiction has made d difference in the expanding whether empirical exdmples exist where which explicitly the conditions under which such change could be observed eort market shares of a condttons may be ceount for arrangements such as joint ventures observed. Models are then designed example of the le selected for which there is littile interferenc. Alternatively, commodities and lobsters to the b.S. and is presented for the Japanese export mark mobile factors. An empirical exports of fresh, chllledada. An example of the former type is sugostes of shrimp, prawns, and , and frozen finfish to Korea.

Moblle Factors and Joint Venture "Trade"

later sections. For this discussion, teneral equilibrium trade models is helpful to provide a basis for are small, relative to the world. In each country will be assumed, X and Y. Both country X and country production of all other goods. The industris country, x and Y two x, x in both country X and country conditions arising from common property, as astial produce commodities F (fish) and G (goods) gnored for the oresent. That is to fndustries of each country (x or , both production surfaces for F and G are well behaved

$$
\begin{align*}
& F=g\left(f_{f}\left(L_{f}, k_{f}\right), 0, T\right) \\
& G=k\left(f g\left(L_{g}, k_{g}\right), 0, T\right) \tag{I}
\end{align*}
$$

Each industry includes a "l
and capita) (K), which are combinedable (0 o ocean, $T=$ terra firma), as
effort, E. It is assumed for this in accordance with f_{f} and f to form a composithe variables labor (L) fitenstre, and the production of other aid, that the production of implication is that allocation of ocea goods is relatively more of fish is relatively more ocean
 land" verlable will be assumed loctan and terrar fipods: Later in is relatively more productive than is (rima within each country. case occurs when the changing factortor mobility with chanalag enduments two countries, x and Y, are refatively largit labionates the mige of the ight be considered. The first . are refatively large (abie fo itfet mice of the output unsidered, The firs (dele teftet melt phice). or if using the factor. If
assufed, motile facars will astion be tradec or will enter intu productive proce ses yielding the highest wage. Tris can be seen srom the first order conditions of profit maximizat on

$$
\begin{align*}
& i_{f}^{x} g_{x e}^{-}=w_{e}^{x} \tag{3a}\\
& \mu_{f}^{y} g_{y e}^{\prime}=w_{e}^{y} \tag{30}
\end{align*}
$$

As ocean ared is redistributed from X to Y, P_{f} in X increases, while the price of fish in $\}$ declines.

 traded on the upen market, ther for a reduction in X's erdowert of ocean area and for an increase in y's
 ther x will sell labor and capital to Y, unsil the fargiral productivity of these two factors increases in country y. Factor pricos will he equalized. However, iffactors are piysicaily mobile between countries, but mot tradeable fin the sense that there are impediments to the transfer of ownerstip rights), then two likely results are the trade of F and G or the formation of a productive activity which takes advantage of the high output price in x and the migh productivity of labof and capital in country Y, wichever has the lower transaction cost. These latter two cases have cocurred on a regular basis as a result of worldwide claims on ocean space. sone countries have made new jurisdictional claims which have made it necessary for them to explore ways of combining these newly owned factors with other factors of production. Howewer, these new jurisdictional claims have constrained other colfries whe had large fleets, and who has taken advantage of the fact that ocean rights were poorly defined.

However, it would be interesting to investigate other cases to determine whether factor movement is more generally observable, given sote cfange in endownent. For example, will small countries experience the same factor movenert phenomenon? Also, will comimon property considerations change the direction of factor movement or trade?

To address the first question of factor movement and small countries, a model was designed such that the effect of changes in endowmerts on the factor and output prices is 0. That is, if the endowitents change, under the model assumptions listed here, there are no effects on the input prices. This is because of the combined assumptions of linedr homogeneity and oerfect competitiom in output markets, i.e., changes in quantities produced do mot change cutput price. These results are well known in the international trade literature and are enbodied in the factor-price equalization thejrem, the stolper-Samulson theorem, and the Rybczynski theorem. $3 /$ A duality exists between the latter two theorems, under the assumption of 1 inear homogeneous functions. This observation will be advantagenus in developing further arguments, since, if the output price ratios are not assumed to be changing, then factor-price ratios will not change throughout the andysis. Further, factor-price ratios will remain equal between industries throughout the analysis. 4 Given the assumption of constant relative factor prices, with the walues of 0 and T constarit, suppose the bracketed functions ff and figquations (1) and (2)) represent the dmount of an intermediate product (cali it effort ["; wich will be produced at a given (constant) factor-price ratio. ln this gase,

$$
\begin{align*}
& F=g\left(E_{f}^{*}, 0^{0}, T^{0}\right), \tag{4}\\
& G=k\left(E_{g^{*}}^{*}, 0^{0}, T^{0}\right) \tag{5}
\end{align*}
$$

These are functions in one variabte with parameterized T and 0 . A production possibifities frontier can be shown for F and G (Figure 1 . Frame a). However, the relationship between E_{g}^{*} and G (with T and 0 constant) is a production function in one variable. Using the constraint condition that $E_{g}^{*}+E_{f}^{*}=E$, the function can be redefined as $G=k\left(\left(E-E E_{f}^{*}\right), 0^{\circ}, T^{\circ}\right\}$. Taking the inverse of the function mould yield $E_{f}^{*}=k^{-1}\left(G, E, 0^{\circ}, T^{0}\right)$. This function, then, is analogous to a production possibilities curve for effort in the fisheries $\left\{E_{f}^{*}\right.$) and goods (G).
If a linearly homogeneous utility function is assumed, the income consumption path for constant prices (world prices) is aG. This function is the solution of the condition;

$$
\begin{equation*}
\frac{f(u)}{\frac{f}{f}(U)}=\frac{f}{P_{G}} \tag{6}
\end{equation*}
$$

where f (U) is the first derivative of utility with regard to F and G, respectively. In this small
country, x, the world price, production points, and consuption points all hapen to coincide at A, on production posibilities curve B. This is a no trade solution. With an autonomous decrease in the gesan area avallable, the production possibilities curve shifts down to D. However, world price has not

Figure 1. Changing Production Possiblitities Curves 日etween Fish (F) and Goods (G) (Frame a): An Inverse
\quad Production Function of Effort (E) and (G) (Frame b).
changed. Under these conditions, the new production point is q, the new consumption point is R, and G traded for F. Specifically. $O Q$ of G is traded for $O R$ fish. Factor . process, thereby satisfying the factor price equalization theortor prices have been unchanged in the available ocean area, the production of fish is decreased theorem. In addition, with the decrease in produced than F. This is the prediction of the Rybczynski theor than increased, and more G tends to be equilibrium, where factors are jmobile between countries, fs that. The implication of this new fish and entered into the production of goods (Figure 1, frame b). Thert is taken out of production of buy f15h.
 iretesu ir pruduction paint Q, some production point combined with X 's physically mobile factors? Suppose, partially avoiding reduced catches in fish that boint ${ }^{2} x$, within the shaded area was obtained, thus combined betmeen countries. A complete shift of x^{\prime} 's product would experience if factors could not be because the assumption has been mide here that the fundamentif chassibilities curve to B is unlikely, the production possibilities of both countries. The anotht will of ef in ocean-rights will also affect However, the amount yu would be used in a new production of E_{F} wald be given up for g production.

changes in host country ocean availabolity') arid the fixed price ratio. In .uther words, a now productive process could be formed; call it $F_{i}=r_{1}\left(!_{1}, k_{i}, 0_{i y^{\prime}}^{1}\right.$, where ocean resources in coantry ψ, in iy are accessed. If O_{j} is the gcean area available under a giveti production arocess, where $F_{j}=g i L_{j}, k_{i}, 0_{j}$, then under factor-price equalizatior and the Rybciynski theorem (and under the assumed furctional characteristics), trade could occor in effort and fish. as well as in goods ard fist. This tendency would be especially strong if:
(1) It was more sifficult or sime consulting for effort to te used in arodiction than in fisti production in country x ;
(2) There is factor fixity among different uses in the "lard" cunstraints iwhich include ocean area available for fisting, as well as the land variable).
With these assurptions, the results under factor-price eaulization and the Rybcyanski theorem follow. These results will be discussed in the next section. However, hefore this topic is left, several clarifications are needed. First, note the prinary result is that consumption urder the new sroperty rights regime has increased winen effort is allowed to be used in a new production process. second, it is important to redife that country Y, which established the ocean property rights, will have production possibility curves moving in the roposite direction. However, with a new groduction process, their ability to secure fistiwill also te further enhanced. Therefore, this joint proctuction process is mutually beneficial. This highly restricted model was used to give a simple demorstration of how trade in effort and fish mignt arise. The assumptions of linear homogene ity, whilc computationalyattractive, are not totally generalizabie to fisheries. The result of factor-price equalization and the Rybezynski theorem depend on a symmetrical bordered hessian of coniparative statics conditions from net revenue optimization. When functions which do not exhibit constent returns to scale are postulated for example, a fisheries production surface), then trade solutions are less clear. Second, relative rates of capital movement be tween different processes may be ari irportant factor in determining the occurrence of trade in effort and in fish. Costs of redesigning capital or reeducating labor for other processes wold play a large part in determining direction of capital movenerit. Internediate typcs of aroduction, such as fishing or teridering in the hast countries' Fisheries Conservation Zones (FCZ's), may be a relatively rapid method of factor deployment. A comparative statics analysis is shown in the next section for a three fattor-three good econony under the assumption that the ccean factor does not enter into the production of goods, for does land enter into the production of fish.

Comparative Statics Results

Comparative-statics sclutions, which compose the basic arguments of the Rybczynsti theorem, are developed in this section. The two objectives are to shaw, under assumptions of linear homogeneity and perfect competition in outputs:
(1) The Rybczynski theorem is upheld for the specified relationships between factor use and factor shares for three productive processes;
(2) The aberrations in relative prices caused by open access will change trade results, but the same basic process of effort movement to joint ventures will still take place under the stated assumptions.
To address the first point, assume there are three possible productive processes:

$$
\begin{align*}
& F_{i}=f_{i}\left(E_{i}, 0_{i}\right), \tag{7}\\
& F_{j}=f_{j}\left(E_{j}, 0_{j}\right), \tag{8}\\
& G=f_{g}\left(E_{g}, T_{g}\right) . \tag{9}
\end{align*}
$$

Equation (7) describes an activity similar to a joint venture, where 0_{i} is the ocean area accessed under such a process. Equation (8) describes a fishing activity, which is essentially home-based, with 0_{j} fixed. Equation (9) is the production of all other goods, with L_{g} being a land variable. Both values of $F\left(F_{i}\right.$ and F_{j}) are fish (or fish oroducts). The endoment, "effort", is a composite of habor and capital, used in the same way as in standard fisheries economics theory. Land is not used in the prusuition if used in the same way as in standard. Therefore, the constraints to this problem are:

$$
\begin{align*}
& E_{i}+E_{j}+E_{g}=E, \tag{10}\\
& T_{g}=T_{s} \tag{II}\\
& 0_{i}+0_{j}=0 \tag{12}
\end{align*}
$$

From the conditions of linear homogeneity, each production process can be expressed in terms of edctor
shares:

$$
\begin{align*}
& 1=f_{i}\left(a_{e i}, a_{o i}\right), \tag{13}\\
& 1=f_{j}\left(a_{e j}, a_{o j}\right), \tag{14}\\
& 1=f_{g}\left(a_{e g}, a_{t g}\right), \tag{1b}
\end{align*}
$$

where $a_{q x}, q=e, o, t$ and $x=i, j, g$ is the respective factor divided by the dependent variable. There is alsa a set of prevailing prices, P_{f} and P_{g} (output prices), and imputed wages W_{e}, W_{0} and H_{t} embodied in the Lagrangian. Under a small country assumption, each country, x and y perceives the same world

The following objective function is obtained from a revenue naximization problem, with resource and unit
isoquant constraints:

$$
\begin{align*}
& L=P_{f}\left(F_{i}+F_{j}\right)+P_{g} G+W_{e} E+W_{t} T+W_{o}^{0} \\
& -\left[F_{i}\left(W_{e} a_{e i}+W_{o}^{a} o_{0 j}\right)+\lambda_{i}\left(1-f_{i}\left(a_{e i}, a_{o j}\right)\right)\right] \tag{16}\\
& -\left[F_{j}\left(W_{e} a_{e j}+W_{o} a_{0 j}\right)+\lambda_{j}\left(1-f_{j}\left(a_{e j}, a_{o j}\right)\right)\right] \tag{17}\\
& -\left[G\left(W_{e} a_{e g}+W_{t} a_{t g}\right)+\lambda_{g}\left(1-F_{g}\left(a_{e g}, a_{t_{g}}\right)\right)\right] . \tag{18}
\end{align*}
$$

(Sections of the above equation are numbered separately for later reference.) Each submodel (16 through
B) of the maximum problem is a F_{i}, F_{j}, and G treated as paranetric. The first problem, subject to the production constraint, with where $x=i, j . g$) are

$$
\begin{align*}
& \frac{\partial L_{x}}{\partial a_{q x}}=F_{x} H_{q}+\lambda_{x} \frac{\partial f}{\partial a_{q x}}=0, \tag{19}\\
& 1-f_{x}\left(a_{q x}+a_{q x}\right)=0, \tag{20}
\end{align*}
$$

Which are themselves sole functions of the wages gaid inear homogenefty the analysis it was assumed factor the factors. Howeyer, as pointed out earlier, If endomments do change. Therempetition in outputs, it is still true factor price the assumption of constralnts, glven the mel ${ }_{\text {qx }}$ are treated as constant. If the *

$$
\begin{align*}
& a_{e j}^{*} F_{i}+a_{e j}^{*} F_{j}+e_{e g}^{*}=E \\
& a_{01}^{*} F_{i}+d_{0 j}^{*} F_{j}+0=0 \\
& 0+0+a_{t g}^{*}=T \tag{21}
\end{align*}
$$

Attention 15 now turned to the
postulated. Note that, since 0 , is postulated endoment of 0 , given the factor distribution that has been Therefore, the problem can be written as:

Solution by Cramer's Rule 'er the three unknowns yield:

 and a $_{0 j}$. One condition contrisuting to a positive from of mobile factors, suct as effort, into the
 the $j^{\text {th }}$ process ithe hone-basec fishery) is relatively great (effort intensive), cempared to the $i^{\text {th }}$ process. In additiun, if the $i^{\text {th }}$ process (joint venture fishing: is relatively nore acean intensive than the $j^{\text {th }}$ process, then es the distribution of avaliable ocean ared changes, factors, such as effort, will try to flow out of the home-based or domestic fishery into the production of fish by joint ventures.
 near-shore and distant: water "leets, tice production in those ocean intensive distant water fleets decreased dramatically witt the on-sct of axtended jurisdiction. By the same measure, the United States represented a situation where one of their factors, ocean, increased. Fisn production also increased, mainly through reduced concetition tor resources. However, the factor, effort, for off-shore fishing was in very short suoply in countries sucti as the United States, but was in plentiful supply in Japan. Effort was the most mobile and pientiful factor in japall. The only remaining question to be resolved was the problem of access and compcrsation in the post-extended jurisdiction world. An important consideration is that must countries could not, for one reason or another, buy the effort components from those countries whicr: had availatie supplies. The U.S., for example was, and still is, restricted by the Jones Act. Cther countries simply did not have the currency to make such large purchases. The creation of joint ventures in the form of the purchase or sarter of services of factors, both acean and effort, became a solution to the problem of factor immobility.

The joint venture, then, could be expected to be organized around the mutual rental of factors. In the United States, these participating in joint ventures almost always engage in over-the-side sales to processing vessels. However, another settlement occurs between the representatives of each partner country. This setuletent involves the apportionment of either proceeds from sales or the fish from the processing activity. Either of these forms of apportionment could be thought of as a rental payment for the use of ocean area (in lepan's case) and a rental payment for effort (in the case of the U.S.). Production of both countries would be increased through the trade of both effort and ocean services.

A simple example has been presented, which shows if the assumption about relative factor intensities between home-based and distant water operations can be made, then a redistribution of factors in favar of joint ventures will occur, even is world prices do not change with changing endoments. The example implies that even small countries which have no control over world prices, would be expected to ergage in "trade" of motile factors of production. Al though a trade solution with all three productive processes fs difficult to solve generally, a greater specificity of relationships between factor shares in different uses, will result in more definitive trade solutions. The effects of allowing factors to move between productive processes will be discussed in the following section.

Two questions which remain are:
(1) How reasonable is it to postulate the following?

$$
\begin{aligned}
& a_{e i}<a_{e j}, \\
& a_{o j}=a_{0 i} .
\end{aligned}
$$

(2) What are the effects of the open access condition, where the world price of fish is relatively under-valued?
To address the first question, more detail is needed about each productive process. While requiring a tignificant amount of effort, distant mater fisheries processes appear to be principally concerned with gaining access to fishing areas, from which raw products way be dram. In other words, those fleets Which would likely enter joint ventures tend to be directed at gaining actess to large areas of highly productive oceans. This could mean joint ventures are using the ocean resource more intensively, relative to their use of effort. Al cernatively, whally domestic fisheries may not have the option of enthring to their use of effort. At ternatively, whally domestic fisheries may not have fishery. With extended jurisdiction. domestic fisheries may be nore effort-
intensive, especially if fishing fleets are restricted to smaller, less productive areas. If these hypotheses are valid, then not only would country x experience effort movement into joint venture operations but, by the comparative statics results, would also experience a net gain of fish coming into the country (as does country Y). Country X's effort has been used, and fish has been and can be part of the settlement for the use of ocean and effort in the bi-national production process. In a sense, the joint venture circumvents a more traditional trade of goods for fish (Figure 2). As an example, the point Z of Figure 1 is placed on Figure 2, to conform with the comparative statics results. (The production possibilities curve upon which Z lies has not been drawn in Figure 2 to reduce clutter in the graphics.) It will be noticed from the comparative statics results (25) that, with a change in ocean area, G does not change. However, the results show that if the assumptions hold, the total production of F does increase. If the Engel curve, $F=a G$, represents the locus of tangencies between the preference map of a country and the boundary of an opportunity set of different incomes with a slope of $-\mathrm{P}_{\mathrm{f}} / \mathrm{P}_{\mathrm{g}}$, then trade will still occur in goods and fish.

Figure 2. Production of Fish Through Joint Ventures, and the New Trade Solution.

Recall that the move from the pre-trade position R to that of 2 took place through a trade of the services of productive factors. The diagramin in figure 2 most closely resembles what has occurred in Japan, that is, an augmentation of production possibilities. At the point Z, IZ (or RK) goods are given up for $\left[T_{2}\right.$ of fish. This new trade solution is an improvement over the previous conditions of trade on
the production possibilities curve. The amount QK of goods are retained by the country, which is better off than if trade of factor services did not occur (though not as well off as they might be with free access). Additionalty, the other country (not shown in Figure 2), which has experienced similar production possibility gains, has been able to expand its production possibilities further than if trade of factors was not permitted. Therefore, both countries benefit from the rental of each other's factors after extended jurisdiction, and those rental payments may be made in fish or currency, whichever is the most advantageous medium of exchange.

The secand question regarding relevance of price in the determination of trade results, when changes in factor endowinents occur, is interesting. As Scott [1955] and later, Gould [1972] and Anderson [1977] have pointed out, the commen property nature of fish resources of the oceans, both within each country and between countries, causes the effort expended in the fishery to be under-valued, relative to its potential value when combined with a resource endowment having strong property rights. This occurs because each individual fishermen, in the attainment of the individual firm equilibrium, causes the industry to be driven to the point where the average revenue of fish equals the average cost of fish. fowever, at this point, rents to the resource are dissipated through free entry. If a production function with a local maximum and regions, decreasing in their arguments, is assumed, the open access colution will have multiple equilibria, where average market costs equal average market revenue. Each of these equilitria represents a substantial divergence from the monopolistic solution (where marginal narket costs equal average social revenue) or the state-run fishery solution (where marginal social costs
equal average social revenue), suggested by Copes [1972]. This phenomenom if cpe, access appears to be widespred in fisheries, and yields price ratios for fist and goods, which are not tangent to the production possitilities curve. Arderson's principal arguments will be used to show this result, except both production surfaces will still te assumed linearly homogeneous, as well as concave. For an economy producing G anc E, where $[$ is used in the srocurement of fish (f) the following conditions hold:

$$
\begin{equation*}
\frac{d F}{d G}=\frac{d F}{d E} d G . \tag{26}
\end{equation*}
$$

Equation (26) states that the sione of the productiop possibilities curve (pPC) for and G is the product of the slope of the yield-effort rolationship and the PPC far effert and goods, respectively. the change in tosal revenue witt respect to a change in effort can be written as:

$$
\frac{d E}{d G}=-\frac{P_{g}}{P_{f}\left(M P P_{t}^{F}\right)},
$$

where $P_{g}=$ price of G
$P_{f}=P r i c e ~ o f ~$:
$\operatorname{mpr}_{E}^{F}=$ riderginal physical product of E in production of F.
Equation (27) states that, in equilitrium, the slope of the production possibilities curve for effort and goods should equal the price ratio of goods to fish, weighted by the inverse of the margina? physical product of effort in the production of fish. This is a well known marginal condition deriving from the satisfaction of first order conditions of revenue maximization. However, the same solution is not obtained for open access fisheries. The solution for open access is:

$$
\begin{equation*}
\frac{d E}{d G}=-\frac{P_{G}}{P_{f}\left(A P P_{E}\right)} \tag{28}
\end{equation*}
$$

where $A P P_{E}^{F}=$ average physical product.
For the same point on the production possibilfties curve for E and G (and consequently for the PPC af E and F), the following relation holds in open access:

$$
\begin{aligned}
& \frac{\operatorname{MPP}_{E}^{F}}{\operatorname{MPP}_{E}^{G}}=-\frac{P_{G}}{P_{f}}<\frac{A P P_{E}^{F}}{M P P_{E}^{G}}=-\frac{P_{g}}{P_{f}}, \text { or } \\
& \frac{M P P_{E}^{F}}{M_{E P}^{G}}<\frac{P_{E}}{P_{f}} .
\end{aligned}
$$

That is, in open access, the price ratio will alwas be greater than the slope of the production possibilities curve betweer goods and fish. The open access solution, therefore, changes the trade solution. In addition, the trade solution becomes indeterminate. However, the open access condition is interesting, because it has the potential for changing the trade solution in a number of ways. However, a deteminate solution is not apparent, unless the more stringent assumptions made before are retained and unless an additional assumption is made; that for every point on the production possibilities curve (PPC) for F and G, there exists a price ratio steeper than the shope of the PPC at that point. Further, each price ratio associated with the PPC point is unique. Assuming the same linearly homogeneous utility function as before (so that the Engel curve ag cam be produced), Figure 3 compares the trade solutions under open access fisheries with Pareto optimality in production. The dotted lime represents the same Engle curve aG, and the line targent to the PPC at R represents the Pareto optimal solution for production, where $R Q$ goods are traded for $Q 1$ fish. Suppose, however, this fs an open access industry, where the true world price ratio is $\left(P_{f} / P_{g}\right)^{*}$. Figure 3 shows another Engel curve fying to the northwest
 price lines will equal the slope of the community indifference curve alang this new locus. Where fish is considered a normal good, the economy in country X will inport proportionally more fish for a unit of goods. If a productive activity which will enable X to produce at Z, the result (predictably) will be that qe' $/ \mathrm{T}_{1} \mathrm{~T}_{1}{ }^{\prime}<\mathrm{II}^{\prime} / \mathrm{T}_{2} \mathrm{~T}_{2}$. That is, as the quantity 7 produced becomes larger, less goods are given up
for fish. Country x would eventually find it advantageous to export fist itself if Z becane large enough. However, counter-acting this trend is the fact that open access conditions appear to accelerate trade in fish; country X will tend to import more fish in world with open access solutions, than if the morid econgay were Pareto efficient, ceteris paribus, Therefore, the open access solution in Figure 3 tembeta;obscure or play down the dampening trends joipt ventares have on world trade of final products.
 Ferity that the anount of goods traded for fish becomes progressively swaller, as the point Z moves up
the dotted line, if there are no changes in the relative slope of the price lires. Although this result is not too surprising, the combination of open access conditions plus factor mobility could be providing a situation where joint ventures and traditional trading patterns will persist, even though the fishery resources have been largely "rationalized" at the international level.

Figure 3. Comparisons of Open Access Versus Pareto Efficient Trade Solutions
However, given the assumptions presented for deriving the cons.
ocean area, ft has been shown that changes in factor endewenparative statics results for a change in factors. Only world prices affect the prices paid to fadowents did not affect the prices paid for constant, factor prices will remain constant. As was distors. Therefore, if world prices are held of the use of linear homogeneous functions and of assumimg a small the previous section, this is a result and a means to effect into that process whit the rental of productive factors, effort that physical factor mobility of effort equalization theorem and the the ocean space factor most intensively. Wil ensure movement of effort considered to show flow of father assumptions made in this analysis. Again, by the factor price This is the duality tetween the stol However, price changes will as: price changes need not be the model shown here is an example per-Samuelson and Rybczynski theorems cause same flow of factors. alternative to the trade of facle where the rental or barter of factor, referred to earlier. Finally, rented out to another producer. 5trus, themselves. For example, a capital gervices is an effective some countries. Then, the next best than an explicit rental of the capital ternative may be to rent out the sale of some capital goods to all paid out of the proceeds of the product, a joint production process could goods. However, rather exchanged for fish or currency. Althought. In this sense, trade has could be formed. The factors are empirical problems for those performing this may not be a surprising occurred, where effort has been Most trades of fish generated from joint trade amalyses using data generated in the it does pose some This mav bias the analjofis if tine lmpacts of extinn processes never appear on the traditinaz mannon. Empirical Analysis of Extended Jurisatetion extended jurisdiction.
Empirical Andysis of Extended Jurisdiction Irade Effects with Mo Joint Ventures
The conditions under which extended jurisdiction octurs wist be clearly specified of fish is to or determinate trade solutionally, the common property clearly specified, if its effect on trade unique or determinate trade solution, such as alght be found under more of the resource suggests that a
possibie to derive. Two reasons exist for such a condition: (1) the shape of the production surface for fish is not usually thought of as linearly homogeneous; and (2) fish and the factors used to take fish are under-valued relative to the standard general equilibrium trade result. These considerations can either be explicitly modeled or implicitly controlied by carefully choosing cases to be analyzed by simple models. Trie latter aporcach was chosen, in a study on changes in lapanese export market shares to the d.5. and canada, in the commedity group of shrimp, prawn, and lobster (SPL). These cases were specifically chasen for the following reasons:
(1) Japan has been hard hit by the trend of worldwide extended jurisdiction, from the stardpoint of the magnitude of less in scoess to fishing grounds.
(2) Shring, prawn, and labster i5PL, produsts are generally considered luxury commodities by dapan, Canada, and the Inited Stades, and rave wide consumer appeat. Therefore, fluctuating consumer effects are expected to be ririf:ized.
(3) The fisheries dealing with sed are, relatively speakifg, inshore; well within the 200 mile limit, Also, all shrims species are fully dil? ized by domestic fleets in the if. S. The inshore nature of these fisheries is gerienally a warldwide trait, related to the biology of the species.
(4) U.S. and Canadian trawlirg vessels and ot ter methots of capture are well developed and may even ae in over-supply. Therefore, little incentive exfsts for a trade in the various forms of effort
 waters and subsequent lunding in 4.5, gorts, with foreign-riade vessels.
(5) The U.S. is a major importer of SPL, as is Japan. Caractian inports are smaller, but this is probably reiated to Canedz"s population size, rather than differences in preference.

Japan's share on the troct: markets of cienada and the 0.5. would be expected to fall between the years of 1959 to 1980 , fuc largely to the worldwide trend in extended jurisdictior. The fall would be probabie, even though mariets for these comodities remained very strorg during this time period.

The role of extended jurisdictior in the irternational trade of seafood has not been well studied. Howeyer, Lin et al. [1Đ81, raise issues regarding the remifications of extended management zones in the world community. A number of siadies have leen done using market shares analysis, in geraral. To study trade flows, direct or proxy measures of the import demand, and the price clasticities of that import demand are needed. Market shares approsches have bcen used to estimate the effects of price competition, and their use avoids the more difficult empirical problems that develop when specifying import demand functions. Studies by Hicknan [1972, 1977] looked at changing trade patterns in the Pacific basin countries between 1955 and 1975. Hickman's unaltered log-linear mode is sperified in the following manner:

$$
\begin{align*}
\operatorname{lna}_{i, j t}= & d_{0 j j}+d_{1 j j} \operatorname{Ln}\left(P_{i t}^{x} / P_{j t}^{m}\right)+a_{2 i j} T \\
& +a_{3 j j} \operatorname{Ln}_{i j j t-1}+v_{i j t}, \tag{30}
\end{align*}
$$

where: $a_{i j t}=$ the share of the exporting country i in the import market of a country j in year t, for all imports defined as:

$$
x_{i j t} / \sum_{i=1}^{n} x_{i j t}
$$

or, the ratio of the country i's exports to country j in year $t\left(X_{i j t}\right)$ and the total exports to country j
$a_{\text {oij }}=$ the intercept term
${ }^{\mathbf{a}}{ }_{1 i j}$
$=$ the short term elasticity of the market share with respect to price (expected sign is negative)
$P_{i t}^{x} / P_{j t}^{\text {m }}=$ the ratio of the export price for all goods of country i, based on F.0.B. price quotes, to an import price index in market f, defined as:
$P_{j t}^{m i n}=\sum_{i=1}^{n} \alpha_{i j o} p_{i t}^{x}$,
Where $a_{i, j o}=$ share of the exporting country to input market in year 0
$\mathbf{a}_{\mathbf{2 f j}} \quad=$ estimated trend growth rate (expected sign is positive or negative, depending on trade

```
\(T \quad=a n\) index of time
```



```
\(a_{i j \mathrm{jt-1}}=\) market shares of the previous period
\(v_{i j t}=\) error term
```

Hickman's model, used in 26 countries or country aggregates, yielded results which have considerabie theoretical and empirical appeal. For example, signs on the elasticity measures, regardless of and 10 percent levels were paper's model specifications, is not included included in his model the variable time, which, in this shifts in demand, but ignores determinants of supply. Hickman's time index is designed to capture secular sore supply determint
Sone supply determinant should be included in the export model for Japan, especially in the case of the
fisheries for 5pl world jurisdictional claims in square nautical miles, by the variabTe AREA (the percentage of 1981 the catch ratio of SPL between dapan Cand miles, by year) has been added to the model. In addition, term supply fluctuations.

The export-import price ratios are not strictly comparable between hickman and the model specified ith this study. Hickman weights the import market price by the share of the exporting country in year 0 . This study computes the price ratio in the following manner:

$$
\begin{equation*}
\frac{P_{i t}}{P^{\bar{m}}}=\frac{E_{i j t}}{E V_{i t}} \frac{\Sigma Q_{i t}}{\Sigma V_{j t}-} \frac{V_{i j t}}{\Sigma Q_{j t}-Q_{i j t}} \tag{31}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
V_{i} & =\text { the total value of exports of Japan of SPL, year } t(1959-1980) \\
Q_{i} & =\text { the total quantity of exports of Japan of SPL, yedr } t(1959-1980) \\
\left(\Sigma v_{j t}-V_{i j t}\right) & =\text { the total value of imports of SPL by Canada (U.S.), less the value of dapanese } \\
& \text { export to Canada (U.S. year } t(1959-1980)) \\
& =\text { the exchange rate between Japan and the U.S. (1959-1980) }
\end{aligned}
$$

In this model specification of Japan's export market shares to the U.S. and Canada, the shares are develeped in walue terms (FDa), the catch is in and is in terms of percent (dectma) fraction x 100), and the price ratio has been substituted for time, currency in yeart. All product forms of SPL were included in this analysis been developed using i. S . Model Tests. Actual specification of ethe export aris
Whtike the Hickman model, the independent variables met shares model was a logistic, or logit, form. familar "S"-shaped function, compen to such functions whis the nged. The logit form of this type is the which are asymptotic at 0 and I . It was felt that the an the normal and t cumulative distributions, to represent the dctud function being estimated. Logisticged form of the logit model was most likely investigate growth in the shares of particle board productic-types of transformations have been used to logistic model has also been used in empirical work, where adoption of and Buongiorno, 1977]. The time related. Another feature of logistic transformation is that it enablechnology has been felt to be between 0 and 1 , to be insured. Since this analysis involyed that it enables predicted share values, relevant values between 0 and i, a model which would consistently predict those values was consider with
important.

The dependent variable was transformed to logit form by dividing each observation of the dependent variable, USHRUS (JSHRCAN) by I minus the varfable; then taking the natura? \log of this indea.
a cimple ?syt: tianaformatuon allows the model to be used as a predictive tool in cases where
the value of a dependent variable lies strictly between 0 end 1 . then a 5 imple tramsformation would be finapproprite. 0 and 1 . If the problem is one of binary chaice,
The following Independent variables (with a sample size of 21 years) for each country were regressed

1.JSHRUS(-1) (CAH(-1)):

> RATIDULGA (CAN): Japanese export price ef shrimp, prawn, and lobster (SPL) divided by the import price of 52 L , mithout laparis share included in the l. S. Canada' in doplars, J.S.).
> AREA: The percentage of 193: 200 mile area claims of ocean held ty countries as territorial or fisherins zunes.

Fie dummy variable was included hecause, upon clase inspertion and corroboration from other sources, it appeared dapanese export trade statistics, eitrer left fresh chilled and frozen products out of the ear'y years or had aggregated them elsewhere. Both fishery statistics of tre united states, as well as Fall production and export statistics, were consulted for severd yrars ith this time period ond it was apparent Japan had an export trade in fresh/frozen SPL during this time period. However, conpcsing Japan's trade picture for a commodity, which appeared never to have been reported would have been a nearly impossible task. To correc*iy specify Japan's market share in the w. 5. , Japar's total export of fresh, chitled, and frozen SFl would heve to be inferred frim import statistics of her trading partners.
lests on the ordinary least squares (ols) models for the U.S. revealed mo heteroskedostic disturtances, using methods outlined by G?ejser [1969] and Park [1966]. However, the Cinadion model did exhibit sume heteroskedasticity, caused by the voriable JSHRCAN(-1). The parameter estimates for sicpu werc cbtained from the regression af JSHRCAN (-a) on the absolute value of the residuals. Thicse were used in subsequent generalized least squares (GLS) estimation of the original model. In cases where heteroskedelsticity was detected and corrected, the more efficiont parameter estimates are presented in the results, along with the t-statistic. Since neither the R^{2} of the original model ror of the transformed model are appropriate indicators of fit, the square of simple correlation between the efficiently fitted values of market shares and the observed values are presented as an approxinate nedsure of goodness of fit, bs suggested by Pindyck and Rubinfeld [1981]. The GLS transformation was made before testing for autocorrelated disturbances.

Tests for autocorrelation in both U. S. and Canadian models yielded ambiguous results, since inflated Durbin-Watson statistics occur as a result of using the Durbin-watson test on bodels with lagged endogenows variables. Attempts to use the Durbin h-test, which is actually for large samples (r $>$? 30), yielded equaliy ambiguous results. A large sample test, alternative to the h-test, shows no autocorrelation, but the prescription is suspect due to the small sample size (2. observations), For this reason, both madels were cormected using GLS estimation techmigues, outlined by Beach and tiackinnon [197B]. The corrected models are shown for each country in Tatle?. The uncorrected models are not presented. since estimates were inefficient. A maximum likelihood technique, used to search for a generalized least squared weight o, was used to correct for autocorrelation.

Table 2. Models of Japan's Export Market Share Response in Shrimps, Prawns and Lobsters; GilS Estimation.
Part I. United Stotes

$$
\begin{aligned}
& \text { LJSHRUS }=-4.81+1.489 \text { DUM }-0.3035 \text { RATIOJUSA }+0.3986 \text { LJSHRUS }(-1) \\
&(-2.161) * *(2.170) * *(-.254) \\
&(-0.0038 \text { AREA }+2.956 \text { USCTHR } \\
&(-.756) \quad(1.393) * \\
& R^{2}=.61 ; F(5,15)=4.64 * * ; 0 b s,=21 ;
\end{aligned}
$$

Part II. Canada

-0.0119
(-0.6998) AREA +.7493 CNCTHR
(-0.6998) \{1.099
$R^{2}=.58 ; F(5,15)=4.19^{* *} ;$ OBS, $=21$; DURBIN WATSON $=2.0603$

* and ** indicates significance at 90 : and at 95% respectively.

It should be emphasized that the poor quality of data available for analyses such as this made even these meager results interesting, in their own right. Also, the direction of effect if.e., the sign an AREA is robust through all transformations and throughout the analysis. Consenuently, a one-tailed test could be done, and if 70 percent was an acceptable level of certainty the parameter est inate tailed cest could significant, It wepld be finsignificant at confidence evel made in response to both Canditian and U 5 models, is thels greater than 70 percerit. One bhservation these models. Despite the efficiently estimateds, is the role of AREA as an explanatory variable in change after using GLS, as expected), both mated parameters (the magnitudes of which did rict appreciably figh lewels. Interestingly, the simple correlations betwen multicolifinearity, although it was not at models revea! that area explains about 37 percent of between irea and the dependent variables of the two percent in the U.S. mode?. Yet the catch rercent of the variation in LJSHRCAN, but only about 16 correlated with AREA. This relationship betwen, whtch explains less than AREA, is relative:y highly topic of further discussion in the next section catch rate, AREA, and the dependent variables is the a t - n-tailed test is wsed. In addition, simple correlationes for AREA suggest a fairly weak variable if negatively correlated. For each model, the catch ratios capturgest the catch ratio and ared is strongly shares issue. The hypothes is is, relative catches determine care an important dimension of the market trade in y year. Both models suggest the ratches determine the amount of emphasis placed on external positively related to the movement of market of dapanese catch to the fmporting country's catch is Japanese catch experiences relative declines or the. Fhat is, as the ratio becomes smaller feither increases), the export market share declines. As would being country's catch experiences relative a substantial amount of the variation, suggesting martet bexpected, the lagged shares variable captures by Japar, has been somewhat stable.

Goth the U.S. and Canadamols rence
significant data constraints assoclated with orid of denand and supply relationships. Because of form was hoped to yield a model which would correcticified structurdi forms, estimation of a reduced exogenous variatles. However, there is still considerablect the market shares response, giver charging unexplained by both models. making models, such as these, oper countries, states that data problems encountered in either. The necessity of incorporating an inveny large and were not completely overcome in their work periods of time, has been vaiced by many economists, including lindess aggregated data, over longer unfiled. since little of this type of data exists. including Lin. This need must presently go
Johnston [1984] has argued strongly that other
extended jurisdiction effects negligible, by comparison. occurring in the worid which could make international monetary pollcy. Since these monetary pol One suth possible varlable could be change ffected the world econowly, espectally in world tary policy changes are thought to have dramaticalles in occurring in seafood trade.

An Analysis of Extended lurfediftien itaue ettects With Joint Ventures

The previous sectfon investigated an example where no fotnt ventures mould be expected to arise, even amount of ocean resources, does not place. Nom consider a case where tha $\mathbf{U} . \mathrm{S}$. a which gained a substant however, has expanded their fisherite, in spite of tof export oxpatision expected with korea. Korea, as in the Japanese export models. except the demy wriaple wristithon. The same model form was used problems with inconsfitemt reporting, except fis iget indelating mot foclugit, because korea had no major

have been made during this time period and not recorded. Additionally, zorroborating trade statistics suggest mare during occurred with the U.S. prior to 1968 . It is possitrle, then, some trade could have taken place in the intervening year.
The following modei variables (sample size $=13$) were included in the study of 6.5 . export shares to Kores:
LUSSHRK = The logit index of the U.S. export market shares of fresh, chilled and frozert fish (excluding salnon and ornamental fish) is defined as:
$\log \frac{\text { USSHRK }}{1-L \overline{L S} S H R \bar{K}}$
RAFUSK.

LAGESK
$=$ The lagged logit index of market shares.
HARRAT, JiHRA, $=$ The patio of total catch between the U.S. and forea. The value of JiHRAT includes the the catch does not include selmonoids, crustaceans, mollusks, or ornamental fish.
NAREA $\quad=$ The percentage of 1981 ocean area under extended iurisdiction.
Until 1979, when the Fist and Chips policy began, $3 . S$. exports to Kores were sporadic and declining, while the korean catch (relative to the 1.5 . catch of the same commodity) was expanding. Since Korea has been aggressive, world-wide, with regard to fisheries agrements, it is not surprising extended jurisdiction trends have had a fimited effect on korea. Although data on karean trade are !imited, a presentation of general effects from different treatments of joint ventures on model results are in Tab'e presentation of genera effects from on the whole, appear to give fairly stable results, with respect to the relative inportance of variables within each rodel. That is, none of the variables made a complete switch from bing insionificant to being significant, with different model specifications. This lack of change is because the joint venture data covers only from 1978 to 1981. Also, the fish and chips policy, which began in 1979 , may be making data interpretations of these latter years ambiguous, since the adoption of this poficy could be causing korea to engage in more imports than they normally might. However, incorporation of joint venture data caused some large whould have been positive (and was models. For example, the laged market share index LAGESK, which shoumificant in Table 2 and also had highly significant in the U.S./Canada share models), was nes were treated, first as korean catoh, and then the wrong sign in Part l of the table. When joint ventures were despite substantial improvements in as U.S. exports, LAGESK did exhibit expected (positive) signs. Despite sume significant. This was standard error of the estimate, however, the parameter for also the case for the two other wariables (RATUSK and NAREA), which werms of explairing veriation in levels. However, each of these two variables, contributed more harvest ratio between the $U .5$. and korea, market shares than did LAGESK. The coefficient for HARR had minor changes and a slight decline in significance.

Market Shares Models for U.S. Exports of Fresh, Chilled and frozen Fish, Excluding Salmon and Ornamental Fish, to Korea: Corrected for Heteroskedasticity and Autocorrelation.

Part I. With U.S.-Korea Joint Venture Catch Not Included

$$
\begin{aligned}
\text { With U.S. } & \text { Korea Joint } \\
& (-3.099)^{* *}(-1.000) \quad\left(0.2187 \times 10^{-4}\right) \quad(4.313)^{* *} \\
& +0.0063 \text { NAREA } \\
& (0.609) \\
& \mathrm{R}^{2}=.63 ; F(4,8)=3.34 * ; 0 B S=13 ; \text { DIRBIN WATSON }=2.1171
\end{aligned}
$$

Part II. With Joint Venture Laicines Ineludod With Korean Catch

Part III. With Joint Venture Catch as a U.S. Export

$$
\begin{aligned}
\text { LUSSHRK }= & (-3.71871-\underset{(-3.284) * *(-1.079)}{0.559} \text { RATUSK }+\underset{(0.1147)}{0.0208} \text { LAGESK }+\underset{(3.637) * *}{4.83} \text { HARRAT } \\
& +(0.00748 \text { NAREA } \\
& (0.7901) \\
& \mathrm{R}^{2}=.63 ; \mathrm{F}(4,8)=3.33^{*} ; \text { OBS }=13 ; \text { DURBIN WATSON }=2.1089
\end{aligned}
$$

* and ** indicates significance at the 90% and 95% levels, respectively.

Note the market shares relationships and their signs are exact analogues of one another, between Table 2 and 3. For example, the coefficient for NAREA is positive in the U.S. export model, since some export activity has been attributable to the U.S. gaining ocean area, relative to Korea. Japan, on the other hand, lost ocean area access to other countries. Hence, Japan experienced declines in market shares for increases in ocean area, under extended jurisdiction. The harvest ratios are analogous between the models, with the catch of the importing country forming the denominator. Therefore, the positive sign reflects the observation that as the relative catch of the importing country increases, the less inclined either country will be to engage in trade.

In the Korean models, a weaker negative relationship existed between HARRAT and NAREA (-. 317), but a much stronger simple correlation between NAREA and the price ratio RATUSK (.502) was present. The latter relationship may be causing inefficient estimates of either HARRAT or RATUSK. Due to the limited data available, these models should be cautiously interpreted. However, it is interesting that relative harvest rates appear to play a vital role in one model and not in another. Note also that, although the model in Part JII of Table 3 is biased in its representation of U. S, export market shares, it is still true the U.S. is a major exporter, even when assuming joint ventures are exports. (If U.S. joint ventures are considered exports, a more correct assessment would be to include ail of korea's world-wide joint venture activities as imports.) Therefore, the direction of change in the models is not a bias, and is an indication that the role of extended jurisdiction under different definitions of "trade" could change substantially.
One final issue concerns the differences between the general form of market shares model used in this paper, and that of other authors. The main difference in the models is in the logit formilations. Price elasticities, which are obtained from the Hickman model, are no longer so easily derived. The general form of the unlogged model is:

$$
\begin{equation*}
s=\frac{1}{1+y_{t-1}^{-a} e^{-\left(a-b_{1} x_{1}+\ldots+b_{n} x_{n}\right)}} \tag{32}
\end{equation*}
$$

where $y_{t-1}=\frac{s_{t-1}}{1-s_{t-1}}$.
If x_{1} is the price ratio between the two countries, then the elasticity of market shares with respect to price would be:

$$
\begin{equation*}
\frac{\partial S}{\partial x_{1}} \frac{x_{1}}{S}=\frac{-b_{1} x_{1}}{1+y_{t-1}^{a}} e^{(a-b x+\ldots+b} \overline{x)} \tag{33}
\end{equation*}
$$

The relationships between variables in the linearized model atso hold for the unlogged model. For example, suppose the shares in this time period ($\mathrm{t}-1$) were increased. The likely effect on future shares can be seen by noting that as S_{t-1} becomes large, y_{t-1} also becomes large. However, as y_{t-1} increases, the value of the right hand of the denominator in (32) becomes very small, so 5 approaches 1 . Conversely, negative values of parameters in the exponent of e tend to make S small. Therefore, the signs on the regression results correctly indicate the direction S will take for a change in the variables.

Summary and Conclusion

Many of the results of each empirical analysis are what would be expected, since specific cases were chosen to isolate the trade effects of extended jurisdiction. However, despite consistent results, both in terms of sign and level of significance, none of the results could be considered conclusive evidence that extended jurisdiction has a direct effect on market shares. What is conclusive is where there is a fairly strong negative relationship between harvest ratios and extended jurisdiction, there is atso some diminution of harvest ratio's explanatory power in the models. Where harvest ratios were very strong, as in the Korean models, extended jurisdiction made less of an impact than in those cases where harvest
ratios were not strong, when ar aribitrary definition was made, caling joint ventures transactions "exports" (Tabie 3, Part III), the impact of extended jurisuiction was somewhat more pronounced.

The lagged share response is importan: in modelimg the consistency and stability of Japanesp export markets, tut was not in the korear rodeis. Although the price ratic is insignificant, this result is not inconsistent with ather work ir this field

In most cases, the price of sharimp was found to be statiscically insignificant in both import denand ard world supply function...joint ventures and shifpent contracts may be among the factors that hinder, to sone degree, tne movements of supply in response to hanges in price. The talure of including an imentory function due to data insufficiency right be amotier major cause of this restit. [lin at al., lgal].

Apart from data availatility, the issuf of data quality and scouracy of reporting should be mentioned. There were numerous cases where tade data could not be cormporated or where grouls of commodities ither appeared to be missime or aggregated under other comodity headings. Tris andoubtedly bas contributed to some of the wariatior in the miodel. Additionally, this study did not investigate the impacts af world monetary policy, and did not confrol for trese occurreftes except tingagh incorparation of the exchunge rate.
It is impartant to fote there is a consistent relationship between obe RREA variable and export market share of the commodities (Japan) investigated. For those mho gained ocean arca ithe U. S.). the , for those who lost, the relationship was negaitwe. However, it has been shown the relative catcin rates betwey courtrifes sometirics play a a ar role in determining export markets Furt be 705 affected than those who rave not beeri as aggressiwe. there may be other connodities and/or countries which would initiaily arpear to nave beet hurt ty extended jurisdiction, tut have actually been binaffected or even assisted by this trend.
In conclusion, this aralysis did succeed in showing re!ative catch rates, as they have been affected by extended jurisdiction, can have substantial impact on export market shares. Inis is especially so im cases where agressive negotiations have taken place to obtairirights to fish. Joint vertures are but one example of where sone rights have been conferred upon guest countries. However, what is interestifg abcut joint ventures is their quasi-trade approach to the aroblem of rescurce access. This is what was theoretically alluded to at the beginning of the paper. Those countries which have gained access through joint wentures or through sone other methods are less likely to be affected by extended jurisdiction. The sumsequent trade can be a barter of effort and expertise in exchange for fish. Such a barter scheme is theretically plausible and the empirical work in this paper suggests such activity could be occurring. However, it is perhaps best to close with a more tangible observation:

The Japan fisfery has just learned that a Soviet-Mauritania joint venture has aqreed to charter 34 Soviet vessels through the end of 1985. Charterage will be paid by giving a percentage of the catch to the Soviets...[Atkinson, 1984].

Ihanks to R.S. Johnston, R. Bruce Rettig, R.A. Oliveira, Mike Y. Martin, and Melissa Wilson for review and technical editing. Thamks also to Lorraine dacobs and Chris stone for typing.

Endnotes

$1 /$ In communication with industry and govermment sources, it was learned that provisions of the Jones Act have been waived in some cases.
2f By well-behaved, we mean: (1) each industry has a large number of identical small firms, and (2) the industry production factors are assumed to be linear homogenous, such that, for each industry, $f^{j}\left(t L_{j}, t k_{j}\right)=t f^{j}\left(L_{j}, K_{j}\right)=t y_{j}$, where $t=a \operatorname{constant}, L_{j}=1 a b o r, k_{j}=$ capital, $j=$ industries 1 or 2. This type of function can be expressed in terms of the input-output coefficients by letting $t=1 / y_{j}$, End is completely desrribed by the unit isoquant. For detalls an the properties of this fuaction see si]berberg $[431-465,1978]$.
3/ For a succinct discussion on the duality between these two theorems, see silberberg [1978].
4/ A necessary condition for this to occur is linear honogeneity in both industries.
5/ The inclusion of these yariables has been criticized by some, because it begs the conparative advantage questlon. The model seeks to explain lapan's trade activities with the United States and
chada in the face of extended jurisdiction. These variables are still of interest, because with catada in the face of extended jurisdiction, fase waril change; thus, giving an indication of change changing property rights,

Anderson, Lee G. 1977. The Eeonomics of fisheries Management. Johrs-Hopins Press, Battinarg.
Atkinson, William. 1984. News :tem from Eitl Atkinson's News Peport. (Trans?ation fram Japancse Trade
Journals).
Beach, Charles M. and James G. Mackinmon. 1978. "A Maximam Like? irood procedure for Regression with Autocorrelated Errors, " Econometrica 46:5:-58.
Buongiorno, Joseph and Ronald A. It iveira. 1977
Hood-Based Panels in lndustrialized Cout "Growth of the Particie Board Share of Production o
Canadian Journal of Forest Research 7:383-391.
Canada. Annual Exports and Imports of Conmodity by Country, Annual: Department of Statistics, Caneda.
Copes, Parzival, 1972. "Factor Rents, Sole Ownership, and the Optimum Level of Fisheries Exploitation," Manchester School of Economics and Social Studies, 41 (wune) :145-163.

Gould, J.R. 1972. "Externalities, Factor Proportions, and the Level of Exploitation of Free Assess Resources," Economica 39(November):383-402.

Hickman, B.G. and L.J. Lau. 1973. "Elasticities of Substitution and Export Demands in a World Trade Mode1," European Economic Review 4:347-380.

Hickman. B.G., Yoshimi Kuroda, and L.J. Lau. 1977. "The Pacific Basin in World Trade, Part JII: An Analysis of Changing Trade Patterns, 1955-1975." National Bureau of Economic Research, Inc. An + Appendix.

Japan. Annual Fisheries Statistics of Japan. Japanese Ministry of Agriculture and Fisheries.
Japan. Monthly, Annually. Exports of Commodity by Commodity. Japanese Ministry of Finance and Japan
Tartff Association.
Johnston, Richard S. 1984. "Extended Fisheries Jurisdiction and U.S. Food Trade." Working paper.
photocopy, 12 p .
Lin. Bifing-Hwaf, Rebecca J. Lent, and Richard S. Johnston. 1981. "Trade and Investment in Fish Products
Among Pacific Area Countries," unpublished manuscript. 58 ;
National Marine Fisheries Service. 1984. United States Imports of Fishery Products. Testimony manuscript. 37 p . 17,1984 hearing before the House Subcomnittee on Fisheries. Unnumbered

Park, R.E. 1966. "Estimation With Heteroskedastic Error Terms," Econometrica 34(4):888.
Scott, Anthony 1 1955; "The Fishery: The objectives of sole Ownership;" The Journal of Political
Economy $63(\mathrm{Apri1}): 116-124$.
Silberberg. Eugenc. 1978. The Structure of Economics: A Mathematical Analysis. HoGraw-Hill, New York, United States. 1981 . LImits in the Seas; Mational Clains to Maritime Jurisdictions. Department of
State, Washington,

United Stotes. Annual. Imports (General and Consumption) Comadity by Country. U.S. Bureau of the
Census.

Changing Structure of Fisheries and Seafood Markets

Situation and Prospects in the West European Market for Shrimp

Rolf Lasch

Institut für Landwirtschattliche Marktforschung der Bundesforschungsanstalt
für Landwirtschaft Braunschweig-Völkenrode (FAL)
Braunschweig, Federal Republic of Germany

1. Specips and Product Forgs ir worla Trade
 sumfiarized the conrercially imourtant species in three basic grolips:
2. Cold water ssecies, which inhabit the North and hortheast Atlantic and the North Pacific,
3. warm water species, whicn inhmil tropical coastal areas, eg. the Imdo-Facific, the western Indian Dcean, the Westerr and Eastern Atlantic and the Eastern Pecific and
4. fresh water species, which live in rivers and lakes, principally in tropical areas.

Table 1. Commercially Important 5 jecies

Source: Rackowe, Robin; The International Market for Shrimp, ADB/FAO Infofish Market Studies, Vol. 3, March 1983.

The cold water shrimp are preferred in the West Curopean market and represent a large oart of zuropean shrimp production. In the USA and Japan warm water shrimp enjoy tre majo par: of the shrimp rarket.

In world trade shrimp are nomally handed frozen, mostiy raw and some cooked. Camner shrimp chiefly consist of small sizes, peeled and pre-cooked. Live and fres! shrimp wi?l be sold or?y in linited areas close to ports.

Shrimp are processed \mathbf{i} different product forms:

- headless, shell-on is the primary form of trade
* whole, head-on is the form preferred in the Southern European rarkets
- peeled deveined (PtD) or peeled undeveined (Ptid)
- breaded
- battered
- Cooked are whole head-on or headless shell-on shrimp, zeeled and cooked, frozen or canned

Shrimp are sold by size, expressed as count per it or kg . The major part of world trade in strimp is in frozen product form. In Europe head-on, headless shell-on and peeled forms are all ir use. Canned shrimp and specialties have only limited markets.
2. Supply Sttuation in the Hest European Market

With landings of approximâtely 1.7 million tons (1974: 1.3 million tons) shrime account for only a limited proportion of world fish landings (1982: 76.8 million tons). ${ }^{3}$) However, they play oecause of their high price for a much more important role in particular production countries and in world fish trade.

In 1982 approximately 55 percent of shrimp landings were in the Pacific. In the North East Atlantic area there were only about 125,000 tons landed, although Western Europe after the USA and dapan is the most. important market.

The catches in the North East Atlantic include in particular northern prawn (lat: pandalis borealisi at a level of 71,925 tons (1982) of which Norway with a catch of 50,841 tons took the predominant part.
In addition, comon shrimp (lat: erangen crangon) with catches of 51,248 tons (1982) have a special Importance in the North East Atlantic catches including the North Sea. Among Western Furopeam catching nations the Federal Republic of Germany with 15,522 tons of common 5 hrimp has the greatest weight.

According to fal statistics the landings of shrimp in the EEC countries have only declined marginally to 52.834 tons in 1982 from 53,406 tons in 1974 .

Table 2. Landings of Shrimp in European Countries

	1974	1982
	toms	tons
Belgiun/Lux.	1,652	2,225
Denmark	1,475	10,207
France	2,768	2,709
Germany (FRG)	28,656	19,834
Ireland	20	142
Italy	9,424	8,801
Netherland	7,525	7,325
UK	1,886	1.591
		52,834
Greenland	$10,243$	40,670
Facroe Isfands	2,023	4.637
Horway	26,481	51.579
Spain	32,325	15,792
	124,47B	165,612

Source: FAO, Yearbook of flshery Statistics, Gatches and Landings, 1974-1982, Aome.

 Changer in wo whe of lemings are to be noted. Lardings nf shrim, espesidily antrern grame increased

 "motherlard" has rex fiticijarly influericerd.
 weters play an imerrtant role only in the south rurapan merbet.

Trade jeveleanents in the $=$ Cot Countmios
 and $19 A^{\circ}$ shows ctearly the suction effects of the Comrm Market.

Table 3. Imports of Shrimp and Shrime products inte the EEC ${ }^{\text {i }}$

1) $1974-9 E E C$ countries, $1982-10 E E C$ countries.

Source: EUROSTAT, Analytical Tables of Foreign Trade, NIMEXE 1974-1982.

Table 4. Exports of Shrimp and Shrimp Productis from the EEC ${ }^{\text {l }}$

	1974		1982	
	tons	million US-\$	tons	million US-S
Tota?	16,496	46.5	64,578	261.6
thereof to: Intra EEC Extra EEC	12,636 3,860	34.5 11.5	$\begin{aligned} & 48,562 \\ & 16,006 \end{aligned}$	$\begin{array}{r} 194.7 \\ 66.9 \end{array}$

1) 1974 - 9 EEC countries, 1982 - 10 EEC countries.
source: EUROSTAT, Analytical Tables of Foreign Trade, NIMEXE 1974-1982.

While in the year 1974 49,111 tons of shrimp with a walue of $45-\$ 161,0$ aillion were fmorted into the Community, the wolume imcreased in the year 1982 to 134,677 tons, that is al nost threefold. The value rose almost fourfold to a total of US- 5597.7 million.

But within these imports there were structural changes. For example, fresh and frozen shrimp in the year 1974 at 23,557 tons of a value of $\$ 63.1 \mathrm{millin}$ accounted for about 48 jercent (49 percent in value) of imports. In 1982, 89,876 tons of fresh ard frozen shrimp of a value of $\$ 342.8$ mifion were itported with a market share of 67 percent by volume and 57 percent by value.

In contrast, the growth rate in inports of processed shrimp from 25,554 tons (19/4) to 44,801 tons in 1982 was markedly smaller. The proportion by volume was reduced fron je percent (1974; to 33 percent in 1982. The value of imported protessed shrimp aroducts decreased from 6 : percent to is percent in the same period.

As stated before, these figures demonstrate the particulor importance of frozen shrimp, raw and often headless shelton in international trade. In the future, towever, is relative 5 fift fron marketing shimp in fresh or frozen raw heddess form to processing and marketing a frocen breaded and frozen peeled and deveined product, as has developed in the US market, is to be expected.
Also there is increasing trade within the EEC but an analysis of the structure of total imports af shrimp, between internal and external EEC-trade, shows clearly that as d result of the increasing market demand accompanied by stagnating landings the market must be supplied from outside the Cominunity.

Greemland has an important share of the increasing total imports of the EEC. Ets deliveries had risen from 3,199 tons (1974) to 22,895 tons in 1982 and the value at 576.0 million is the greatest.

In value terms Norway with exports of 7,895 tons and a value of $\$ 59.7$ million, o! which orocessed products have a much higher proportion, takes second place.

In contrast to Norway, Greenland supplies primarily frozen shrimp ($18, \mathrm{c83}$ tons / 79 percent.). Among the Northern European countries, lceland should be noted with deliveries of 2,743 tons and an export value of $\$ 16.7$ milifon in 1982 . The market supply within the EEC for shrimp is increasingly affected by deliveries from South East Asian areas including India, Bangladesh, Shailand, Chith and Malaysia.

Presently, Thailand is the most important source with 9,001 tons ($\$ 35.0$ milion followed by Malaysia with 6,129 tons ($\$ 39.9$ million), India with 5,541 tons ($\$ 27.2$ million), Bangladesh with 4,224 tons ($\$ 25.3$ million) and the People's Republic of China with 1,563 tons ($\$ 14.2$ mition).
lt should be noted that Thailand and also Malaysia predominantly supply arocessed shrimp while the imports from India, Bangladesh and China are almost completely in the form of frozen shrimp.

Amonc african suppliers Senegal plays the most important role with deliverics of 4,144 tons worth $\$ 25.3$ million. Cuba has shown a noticeable growth in exports to the EEC since 1974 , which at that time were only 680 tons $\{\$ 2.1 \mathrm{million})$. This has increased to 4.184 tons with a value of $\$ 28.6$ million in the year 1982 of which approximately hats were in frozen and half in processed form.

As with Greenland and the faeroe Islands, other non-EEC countries supplying the market often have special trade relations with individual EEC countries, e.g. in 1982 not less than 79 percent of the Greenland ard Faeroese exports of a level of 24,211 tons were supplies to the EEC through Denmark while Senegal and Gabon delivered the greatest proportion lover 90 percent) of their supplies to france. Of the Indian exports to the Comminty in 1982 about three quarters were supplies to Great Britain while the daminant proportion of the exports from Thailand and Cuba go to the French market.
The strong demand of the French market for shrimp influenced also internal Comrunity trade. Denmark with 5,253 tons (15 percent of the total) and the Metherlands with 4,958 tons (14 percent of the tatal) were the most important suppliers among the member states.

Furthemore, the Netherlands are the leading transit center for trade to other EEC countrics. Dutch traders handle a substantial volume of sales in other West European markets.

Between 1974 and 1982 total apparent consumption of shrimp in the important EEC countries increased by 43 percent from 86,021 tons to 122,864 tons. The total and per capita shrimp consumption are shown in table $\stackrel{5}{5}$.

The apparent per capita consumption in Denmark at 1.42 kg per head is highest followed by Belgilun/ Luxemburg at 0.69 kg , France at 0.64 kg and the Netherlands at 0.62 kg . In the Tower half among EEC countries are the federal Republ ic of Germany with a consumption of 0.39 kg per head, Great Britain with 0.37 kg and ltaly with 0.34 kg .

This description of consumption in product weight terms is somewhat misleading as it is derived from international trade statistics in which the welght of frozen shrimp and that of shrimp products are summarized.

Table 5. Apparent Consurption of Shrimp and Shrimp Products (tons)

As Dutch and Danish companies are specialized in processing imported whole or headiess shrimp for re-export as processed products import and export data are not totally comparatile. If wiew of this, the Dutch and Donisn consumption figures appear too high.
In voiume terms framce (34,429 tons), the Federal Reputic of Germany (24,236 tons), United Kingdom (20, 845 tans) and itaty $(19,158$ tors) are the most importart martets withir the EtC because of their population. However. Es Gemany ${ }^{4}$) and ILsly are to a substantial degree supplied from domestic landings, France and Great Britain remain as the most important import warkets in western Europe.

Outlook
In the case of shrinp, increased per capita consumption has been associated with increasing rates of exports to the EEC. ihis rapid growth has been due prirarily to two factors. First, shrimp resaurces nave been developed at an increasing rate in several areas of the world. Secondly, the EEC market has seen able to absorb growing imports at high price levels.

Like prices of other seafood, the price level of shrimp has tended to increase both in nominal and in real prices aver time.
But the demand for shrimp will depend on the state of economy, changes in consumer income and prices of substitute products.
In the recent years, shrimp consumption was influenced by economic stagnation in the EEC and weakening currencies against the US-dollar. The strong dollar will have caused deviations in trade mainly to the US market. These movements in exchange rates encouraged the exports to the USA, e.g. Norwegian export sales increased fourfold during 1983.

Extremely good catches of cold water shrimp in the NortheEast-Atlantic led to a new record in Norwegian shrimp production in 1983 . with a haul of 76,473 tons, 4048 percent on that of 1982 , shrimp are now second only to cod in value in the Norwegian total catch. in duTy 1984, Norway stopped its shrimp fleet because further big catches put pressure on stocks and threatened to flood the markets. Shrimp landings have been too large for the capacity of the processing plants. ${ }^{5}$)
But other Nordic countries continued to contribute their share to the growing supply. In Iceland, the catchings of deepwater shrimp which are not under some form of protection jumped from 9,150 tons in 1982 to 13,091 tons in 1983. And in the first five months of 1984 , the catch totalled 7,731 tons, up from 4,026 tons in the same period of the previous year. ${ }^{61}$
Therefore, the suppiy outlook for 1984 of cold water shrimp from the Nordic countries is still bright.
Despite wide fluctuations in individual countries and in landings from year to year, world shrimp catches increased steadily in the 70 s . But looking at the markets over the next ten years, Rackowe ${ }^{7}$) predicted that no substantial increases are expected, because traditional fishing grounds for shrimp have reached a
 come only from shrimp aquaculture.
World demand for shrimp will continue to grow and producers could have difficulties in meeting market requirements.
The improved economic conditions on the US market and the high value of the dollar make this market particularly attractive for the Asiatic and also for the *orth European suppliers. In addition, the

Japanese demand for shrimp is also expected to increase. In any aase a partidl substitution with new products on the very price-sensitive market and also on that of the ljsA cannot be ruled out

The markets for surini-type shellfish product show alpeady large growth rates and these products have been exported to the $5 S A$ in rapidly increasing quantities. These new products represent one of the most successful product inmovations on the US-seafood market.

Without doubt, the European marfet is also eapable of absorbing additional quentities of shrimp beceuse per capita consumption in Europe is still small by comparison with the USA.

But the European market consists of several countries, each with its speciat requirements with regard to types of products.
In the Horthern regions consumers have a traditional praference for cold water sirimp but tropical species are steadily gaining acceptance in these markets in recent years. in UK and in Germany practically all types and stzes are in demand. The countries of Southern Europe (Spain, Italy, France) prefer tropical shrimp principally im head-on form. In France also substantial quantities of cold water strimp are consumed.

Because domestic landings are relatively stagnant in the EEC countries it is estimated that the growing consumption will have to come from increasing imports. This includes species and product forms not presentily popular in Western Europe.

Although the extremely good catches of cold water shrimp depress the market for tropical shrirfp, at present, the increasing popularity of warm water species should encourage Asian exporters io give further attention to the West European market.

But considering the effects on demand of the incident of food poisoning in the Netherlands, in which 14 people died, caused by shrimp from South East Asia, consistently good quality must be the business philosophy of the shrimp trade.

Footnotes

1) In Western Europe small-sized shrimp are often called prawns.
2) Rackowe, Robin; The International Markets for Shrimp, ADB/FA0 Infofish Market Studies, Vol. 3, Marth 1983.
3) FAD, Yearbook of Fishery Statistics. Catches and Landings. Vol. 54, 1982.
4) From the German landings a significant part is exported through the Netherlands to the French market.
5) Fishing News International, Vol. 23, No. 7, July 1984, Heighway Publications Ltd., London.
6) Fishing News Interfational, Vol. 23, No. 7, July 1984, Heighway Publications Ltd., London.
7) Rackowe, Robin; The International Market for Shrimp, ADB/FAO Infofish Market Studies, Vol. 3, March 1983.

A Model of World Trade in Fish Products

Ulrich Sommer
Institut für Landwirtschaftliche Marktforschung der Bundesforschungsanstalt
für Landwirtschaft Braunschweig-Völkenrode (FAL)
Braunschweig, Federal Republic of Germany

Introduction

 son for this trade exparsior which As attritutable to greetres suply as well as greming demard for hig
 consurfiticn fish ctocks. The meir dentand certres are the rict western Europear and North Arerican countries and those couritrife hevirg a short eodstlire. There are mery courtries in westerti Europe with botr of there features as may be seen in the import developrest sinde 1970.

Besides the westem Exropeart and Norm Arerican trace arees mere aire some cther but iess jeportant trede comentratione e.E. the trade within the Fast-esiatic area and betweer the Jrited States and the South Anericar countries.

The data or world trade ir fisheries are available in the form of trede statistics for some product groups and the whole trade, respectively. They have a hiph aegree of agregation end withir this product aggregation there are changes fr. protwets and guality levels between different years. fins is why an ambitious econometric model shou?d not be used. But to discuss the trade development mot only by absolute or relative trede fiows but by figures which enable one to draw quickly a perallel between all trade relations withiri one matrix and within several years, information theory is used in the analysis of world trade ir. fish and fish products.

1 Information Theory and Intertationat Trame

Difficulties in pering guantitative analysis grow with the size of the geographical area that is to be incluced in a mocel. These difficulties result not only from nany dirferent factors influencing the direction, dimension and composition of the trade flows but alao from the unsatisfectory nature of the statistical data in regare to objective, spatial and temporel de initation. Fowever, to derive carparable conclusions within one trade matrix and over a time period, ore should try to fortilate characteristic properties in the form of one figure. One method to do this is by means of the information theory which is established in the forefront of the empirical quentitative analysis of intermational trace (Binn, 1967, p. 12).

1.1 Sonte Definitions of Information Theory

Information theory defines the information content of a defirite and reliable message as a function of the probability that the event would take place before the message came in (Theil, 1967, P. 3). The higher the probability of the event realization is the smaller is the information content of the meassage. This connection between the probability p and the information of the realigation of the message $n(p)$ cam be described by a decreasiry function (Sharron, ± 948, p. 380).

$$
h(p)=\log \frac{1}{p}=-\log p
$$

To have an idea of the information content before the message is received, the entropy i.e. the expected information content is computed in the following marrer.

Let the probetility that one wessage cones in be p_{1} and that it is not realiged be p_{2}. Conditionally the sum of p_{1} and p_{2} mast be 1 . The entropy (H) is the sum of the friforiation contents weighted with the corresponding probabilities.

$$
\begin{aligned}
H & =p_{1} h\left(p_{2}\right)+p_{2} h\left(p_{2}\right) \\
& =p_{1} \log \frac{1}{F_{1}}+p_{2} \log \frac{1}{F_{2}} \\
& =\sum_{1} p_{i} \log \frac{1}{F_{i}} \quad(i=1,2)
\end{aligned}
$$

The information theory car be used only if the probabilities F_{i} add up to one

$$
\sum_{i} p_{i}=1 \quad(i=1,2,3, \ldots, m)
$$

If there are two sets of probabilities, which are connected with eeck other in e two-dimensional matrix, bivariate information theory has to be applied.

The two marginal distributions X_{i} and X_{j}, which are stochastically independent from each other, and the bivariate distribution $X_{i j}$ have to falfil the condition that the sum of the probabilities that the messages come in is one. For each distribution the weignted average information cantent can be corputed as follows:

$$
\begin{array}{ll}
H\left(p_{i .}\right)=\sum_{i} p_{i} \log \frac{1}{p_{i}} & (i=1,2,3, \ldots, m) \\
H\left(p_{i j}\right)=\sum_{j} p_{j} \log \frac{1}{p_{j}} & (j=1,2,3, \ldots, n) \\
H\left(p_{i, j}\right)=\sum_{i, j} p_{i, j} \log \frac{1}{p_{i j}} & (i=1,2,3, \ldots, m) \\
(j=1,2,3, \ldots, n)
\end{array}
$$

The relationship between these three entropies is the so called "mutual information" $\log \frac{\mathrm{p}_{\mathrm{ij}}}{\mathrm{p}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} \mathrm{j}}$. This term is a measure for the difference between the independence level $F_{i}{ }^{p}{ }_{j}{ }_{j}$ and the realization of the message $X_{i j}$ wich has the probability $p_{j j}$ (Theil, 1972, p, 125).
The mutual information is a value measuring the difference from the indepencience level for two specific messages. For the whole matrix system this is done ty the entropy of the mutual information

$$
H=\int \sum_{i j} p_{i j} \log \frac{P_{i, j}}{p_{i} \cdot{ }^{p} \cdot j}
$$

The value for this entropy is zero if there is stochastic independence between X_{i}, and $X_{. j}$. It is nonregative and growing as the system noves away from irdependence (Theil, 1967, p. 34).

1.2 Application of Information theory to a Trade Matrix

The transformation of an absolute trade matrix to a relative one similar to a probability distribution enables the application of information theory, because in the matrix system the two marginal sets and the interior values, respectively, add up to one

$$
\begin{aligned}
& \sum_{i} \bar{X}_{i .}=1: \int_{j} \bar{x}_{\cdot j}=1 ; \sum_{i j} \bar{X}_{z j}=1 \\
& \mathbf{x}_{i_{\text {}}}=\text { total export of country i } \\
& \mathrm{X}_{\mathbf{j}}=\text { total import of country } \mathbf{j}
\end{aligned}
$$

$$
\begin{aligned}
& X_{i_{i}}=\text { trade fow fron } i \text { to } j \\
& X_{.}=\text {world trade }\left(\underset{i}{\left[X_{z}\right.} \text { or }\left[X_{j}\right)\right.
\end{aligned}
$$

The matual irformation of iss byster. $\operatorname{icg} \frac{\bar{x}_{i_{i}}}{\bar{X}_{i}} \bar{X}_{j}$ car be defined as an ageregated coeffecient of al:
trede activities. It is fusizive j^{5} the given trace flow is greater thar the imapendence patterm inplies and negative is the cppusite casc. foreover the develcerert over time of the sidividual mitual "romation velues crables e relatively quick survey of the developmert of the trade flowe within the whole time sycter. (ryet], 1467 , p. उ65/264).
The method discussed can clec ue aptlied to the projectior of binuteral trade rlows (Uribe, Theil and
 are done under the aseuption or constert teade irtersioy of the basic watrix. Over a short period there

There is one problem the rmist be solved in the arpicatior of informatice theory to trode projections.
 the trade matrix of the base yecr ($\bar{X}_{i j}^{i}$), the sun co the projected rearive trede flows does not add up
 p. 1:3 fr. and the ciled literature).

2 World Trade in Firn Frciusts
The value of the infort traje tr. total fict products has itcreased for 1970 io 1982 six fola. This is due to nearly ail product proups (table 1). The greatest expensicri ir volume as weil as in value tas heppened in the trade in crusteceans and molluscs (fresh, frozer, zalted and dried) but this is orly marginazly grater than the deveiopment regaring fresh and frozer fish. Orly the trece in salted and cried fish shows decreasing tendencies in volume.

Fegarding the geograpical distribution of exporte and jmports there is ar obvious concentration of both, imports and exporte, ard elso of all product eroups in the Erdustrial countries in Earope, feia and North Amerjea. However, grouth rates mairly in exporte are greater ir. South frerica, Africa end oceania. It is assumed that thes is a direct resuilt of the exparision of the fisting irdustry in many of developine countries in these cortinerts.
Since there are ne woild trade matrices published anywere, the onct publication "Trade by Comodities" is used as basis for the anglysjs of total world trade ir fisheries in value. These trade matrices give a very good overview of world trade (total valuc) because totai importe of orci are reariy $85 x$ of total world inyorts as putlished ty FAc (Yearbock of Fishery Statistics) and the remaning world trade of 15% comes to a large extent from OECD countries too. Bxpecially Japan, Norway, Iceland and Spain export large cuantities to African countries. Moreover Jepar delivers to the Far East market ani Carada and the Unitcd States export to the South American courtriec.
The matrices used in this paper are therefore compiled from OECD smport and export statistics and total trade of Non-OECD courtries has been taken fron FAO yearbock of fishery statistics.

2.1 Thtal Trade in Fish Froducts (excluding Fishneal) in Value from 1976 to 1981

World trade in fish products has doubled within the time period considered from 8020.9 million US- to 15636.6 million US-\$. Regarding the importing countries there is a strong concentration on the USA and Japan. These two countries inport together nearly 40% of total world trade. However, whereas the inport share of the USA is decreasing, the imports of Japan increased from 1976 to 1978 and show in 1981 a new rising tendency after a break in 1980. The model includes all wece nender countries separately to show trade flows between these countries and also between each EBC country and ether exporters and importers. However if the EFC is regarded as ore trade area it is by far the greatest inporter. The inport slare has risen from 26% in 1976 to 31% in 1980; in 1981 however the share decreased to 27%. That means that in 1981 these three countries (USA, Japan, EEC) imported 70% of all fish products (in vatue). Regarding the exporting countries there is no similar concentration as on the import side. In 1981 the greatest expofter wea Comoda with of of world trade followed by the USA (89) anc Japan (65). Bat if the world trade thares of the REC countries are added up it can be seen that inc ien is =ise hy for the preatest exporter with 15.5%.

2.2 Trade Intensity

biscussing a time seriet of trade matrices is very complicated becase you can calculate four coefficients for each trade relationship between two countries (two import shares and two export shares).

Therefore in this roport a method is used that allows the celculation of one watract coefficient which is a omposition both; of import ans cxport shares which is seer by deconosition of the coefficients

$$
\begin{aligned}
& \alpha_{i j}=\frac{X_{i, j}}{X_{* j}}: \frac{X_{i .}}{X_{\ldots}} \\
& \alpha_{i, j}=\frac{X_{i j}}{X_{i .}}: \frac{X_{. j}}{X_{n}}
\end{aligned}
$$

Besides these two equations iliustrate that the trade intensity between two courtries i and j, under the condition of a constant world tracie share of total inforts or total exports, is ercming if the ingore or export share increase and vice versa. Ir other words the trade coefficierte give a direct measure of the trade intensity between two countries with regard to total trade. As the totai trade (X..) is eonsicered in the calculation, the trede intersities are fully comparable within one year and between several years. Thus the information theory on which the calculations are lesed gives the possibility to describe the interregional relations in one metrix.
As trade flows between 27 import regions and 31 export regions are analysed in the nocel it is inpossible in this report to discuss all details. Therefore, only the nost importent and those where changes have happered are mentioned.
Regarding the trade intensities for Canada as an export country (table 2) it is obvious that the trade relations with the USA are the closest and that they are increasing since 1977. Morcover the principle of calculating the trade coefricients can be shown with Canadas export trede: Though Japan inqorts a larger volume from Canada than the UK does, the trade intensity of the UK is greater than that of Japar: because total inports of each country and world trade have been included in the calculations.
The USA have expanded export trade by more than three fold and have intersified their trade relations with Japen, Australia and other countries in the Far East. However, the greatest trede intensity exists with Canada, but the capacity of the Canadian market is limited to some special high quality products because the degree of self sufficiency of Canada is very high and sc trade reiations with Canada are unlikely to expand. This is clearly to be seen in the development of the trade coefficients which have decreased from 12 (1976) to 8 (19E1). As mentioned above imports of the USA have increased but the worid trade share has decreased. The geographical distribution of the US trade flows can be interpreted as a diversification in fish demard. Supply of Canade, Norway, Iceland and Dermark midnt be stibstitutes for each other. Whereas the USA has intersified its trade with Canada it has reduced its trade with these European countries. By contrast trade with many countries in South East Asia has expanded. This should be the result of growing demand for prouncts candit in these countries, mainly crustaceans and molluses.
The Japanese market is mainly supplied by South East Asian countries but also from the USA. The growint trade coefficients for imports from the USA should be mainly influenced by a growing number of jointventure agreenents.
The trade intensities with the neighbouring countries, Australia, South Korea, Taiwar, India, PR Chiraz, Indonesia and Thajland were at a high level during all six years. They show an increasing tendency only in the trade with India and PR China, two countries with high production, which are able to supply the large Japanese consumer market that suffers under the limited catch possibilities as a result of the extension to 200 seamiles in those catch regions where the large Japanese fishing fleet has operated.
The nethod used in this paper is very suitable to show the effect of the contribution of a trading comminity like the CFCD or the EEC. Unfortunately in this report only trade data from 1976 to 1981 are available so that the effect of the commity cannot be show. This will be done in ancther study. But what can be seen is that all trade coefficients for trade relations between the EFC countries are very high and if one looks at the changes in the trade intensities for the exports of oreece the accession to the EnC in 1981 has been reflected in increased intensities between 1980 and 1981.

2.3 Trade Stracture Aralysis

 This has been done becalse it is inpossible to quantify all reasons that are of significance for tis flow development in such a matrix. This uethod is therefore a more descriptive method. In the following chapter charges in total trade of each country will be divided into a growth, a structural and a competitive couporent.
For this purpose the export ratio of courtry $i\left(r_{i}^{t}=X_{i}^{t} / X_{i}^{0}\right)$ is divided into the growth ratio of total

'lable i: Worid Trade in Fish Foducts (Inqorts)

Prociuct	2976	1972	1974	1976	1978	1980	1981	1982
1risin, Trest, froger Fish, satuec, crjed, ancirud Crustenears and millege, saltec, arjed, sricked Fish, samed ${ }^{1}$ Cristrenay end rallace, cannes ${ }^{1)}$	1000 t							
	\therefore CCO	2 234	; 754	- 855	$3: 16$	4166	4267	4306
	4	L07	Si	358	356	425	414	354
	43	E76	75	95	196	1109	116	1178
	6e	Ef	73	60	63	976	1 cts	907
	20%	912	12	145	-60	170	180	153
Fish, Etesh, irceer.			225	$\bigcirc 81$		5846	6202	6274
Fish, salted, aried, srkkej	-5	417	Sco	T?	± 006	1217	1 EGE	$114 \hat{e}$
Crastaceans and rxilusce, satted, dried, jmoked	EEf	$\therefore 1.15$	1314	25.1	3 S \%	421	4519	4978
Fish, caned ${ }^{\text {a }}$	48	120	56:	4 A 56	- 535	2152	2194	$\therefore \mathrm{FLC}$
Crastacears and molues, cantred ${ }^{\text {I }}$	16.4	206	359	440	520	803	815	867
Total	2592	3859	57 t 5	7701	11044	14395	$15 \mathrm{C12}$	15200
1) Producte ard preparations, whether cre rict ir aidtigt containere. Scurce: HO, Yeariock of Fishery Statistics.								

Table 2: Trace cofficierte

Countries	1976	1977	1978	1979	1980	1981
Exports from: Canaca						
USA	2.59	2.32	2.43	2.45	2.60	
Sapan	0.67	0.86	0.92	0.78	0.54	0.56
United Kigcom	1.02	1.16	1.02	1.16	1.86	1.75
Exports fron USA						
Carada	12.03	9.89	7.43	7.33	9.76	8.11
Japan	1.08	1.80	2.22	2.00	2.06	2.19
Australia	$\pm .09$	1.23	1.63	1.40	1.85	1.70
Far East	0.89	1.25	1.20	0.98	2.37	3.32
Inprorts to TISA						
Dersmark	0.64	0.78	0.68	0.35	0.23	0.32
Iceland	2.06	2.36	2.07	2.25	1.75	1.55
Norwey	0.61	0.70	0.70	0.44	0.44	0.42
Thailand	0.41	0.53	0.59	0.84	0.85	0.82
Taiwan	0.73	0.63	0.71	0.83	0.84	0.93
Other	1.06	1.10	1.27	1.24	1.32	1.38
Imports to Japars						
India	2.97	2.68	2.62	2.69	3.45	3.31
Chind PR	1.74	1.71	2.16	2.09	2.77	2.45
Korea fep.	3.53	2.53	2.68	2.33	3.08	2.66
Taimen	3.30	3.21	2.96	2.72	3.55	3.09
Indanesia	4.17	3.86	3.60	3.30	4.35	3.95
Thailand	2.89	2.31	2.00	1.84	1.99	1.94

$$
r_{i}^{t}=\frac{X_{i .}^{t}}{X_{i .}^{o}}=\frac{X_{1 .}^{t}}{X_{o}^{o}} \cdot \frac{\bar{X}_{i_{.}}^{t}}{\bar{X}_{i .}^{o}}
$$

The growth retio of the export share is divided into the competitive component (com) and the structural conponent (s). For this purpose each trade flow share ($\bar{X}_{i j}=X_{i j} / \mathrm{K} .$.) is expanded by $X_{j} / \mathrm{X} .{ }_{j}$ '

$$
\bar{X}_{i j}=\frac{X_{i j}}{X_{\cdot .}} \cdot \frac{X_{\cdot j}}{X_{\cdot j}}=\frac{X_{i j}}{X_{\cdot j}} \cdot \frac{X_{\cdot j}}{X_{\cdot .}}=a_{i j} \cdot b_{i j}
$$

The competitive component attributes changes in the growth ratio of the export share (ges) of country i to changes in merket shares (a_{ij}) and the structural component does it to charges in total import share of country $j\left(b_{. j}\right)$.
Now we can write 'ges' as follows

$$
\operatorname{ges}=\frac{\bar{x}_{i *}^{t}}{\bar{x}_{i .}^{o}}=\frac{\Sigma a_{i j}^{t} b_{\cdot j}^{t}}{\Sigma a_{i j}^{0} b_{j}^{t}} \cdot \frac{\Sigma a_{i j}^{0} b_{.}^{t}}{\Sigma a_{i j}^{0} b_{j}^{0}}=\mathrm{com} \cdot s
$$

As the two indices are weighted by different quantities they are not directly corparable. Therefore, a transformation has to be made to get the same judex for both components. Doing this transformation a correction factor appears which is the relative fifference between the Paasohe- and Laspeyres-irdex. This factor is influenced by each of the two components and grows with the difference between base year (0) and reporting year ($\stackrel{(}{5}$). Therefore a yeariy correction of indices is made through which the value of the correction factor is minimized and lies near 1, so that it can be ignored (Henkner, 1971).
The importance of the competitive and siructural component is judged in the literature in a different manner: But sureiy it is not wrong to say that the components give an overview of how the export advantages in the bese year have been used on not. However, it is assumed that the supply or production elasticity, respectively, of the exporters is at least as large as the demand elasticity of the countries supplied.

2.4 Empirical Analysis of Cometitive and Structural Development in the World Market for Fish

Dividing the export ratio in several components enables us to give an overvicw of the influence of a group of variabies without knowledge of the direct influence of each of them.
2.4.1 Structural Component. This component shows under the assumption of constant market shares what the development of exports of one country would have been as a result of import demand changes only. Positive growth rates of the structural components imply that a country exports the largest share of its products into countries with inport denard growth rates which lie above the average.
This relation is to be seen clearly in the developnent of the Canadian exports because they are strongly influerced by the trade flows to the USA (table 3). The share of world trede of the USA has decreased from 1976 to 1980 . As Canata exports neariy 50% of its fish products to the USA this decreasing share of world trade leads to a decreasing structural component.
Another fairly good exarmpe is the Japanese export. Since 1977 Japan exports growing guantities to Nigeria and Lybia whereas the other relative trade flows do not show great charges. As the import growth of these two countries lies abcve the average of totai world trade, this leads to an increasing structural component of Japenese exports.
2.4.2 Conpetitive Component. The conmetitive component gives infomation about ohenges in the merket shares. The value of this component is an indication of the competitive position of one country - measured as market share - in total imports. It does not give information about the infortance of this country in total world trade because competitive, structural, and growth components may have a different developient. Oniy the product of structural and competitive components shows changes in the world trade share. In the discussion of changes in the competitive component all additional infomation of activities detemining fish supply should be included to avoid misinterpretation.
From the countries mentioned in this report New Zealand has the highest growth in exports fron 1976 to 1981. This could be reelized by growing fish catches but it is based on an active trede policy because New Zealand has not automatically profited by exports into countries with growth rates above the total world trade. New Zealand has expanded its market share in many countries, for example Australia, several countries in the Far East but also in Europe (France, Italy).

Take 5: Exporte of Figh Muduct E, 5fe-193:
$1981=16 \mathrm{C}$

Yem	Ticta? extrtu $?$	Comporchts ${ }^{\text {1/ }}$ af expert develgyment		
		Growtr: 5	$\begin{gathered} \text { St mathe } \\ E \end{gathered}$	$\begin{gathered} \text { oum } c^{+} \text {itis } \\ \operatorname{com} \end{gathered}$
ceners				
196 196 196 196				
Japgr				
1976 1976 1976 1976 1920	6.2 6.7 8.7 $7-7$ 7.5		$\begin{aligned} & 7-0 \\ & 2.5 \\ & -2 . \end{aligned}$	$\begin{array}{r} 144.7 \\ 13+8 \\ 130 \\ 040 \\ 1020 \end{array}$
New Zealera				
1976 196 -976 1979 1980	26.7 31.2 46.9 69.5 77.8	$\begin{aligned} & 54.3 \\ & 59.7 \\ & 72.1 \\ & 92.0 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 104.2 \\ & 194.8 \\ & 94.9 \\ & 94.8 \end{aligned}$	$\begin{aligned} & 50.6 \\ & 50.0 \\ & 61.5 \\ & 79.6 \\ & 86.6 \end{aligned}$
Greenlaras				
1976 1977 1978 4979 1980	$\begin{aligned} & 30.0 \\ & 39.5 \\ & 42.4 \\ & 71.4 \\ & 97.8 \end{aligned}$	51.3 59.7 75.1 92.0 94.7	$\begin{array}{r} 97.7 \\ 97.3 \\ 95.8 \\ 94.5 \\ 107.0 \end{array}$	$\begin{aligned} & 66.7 \\ & 68.0 \\ & 58.9 \\ & 81.6 \\ & 96.5 \end{aligned}$
Germany				
1976 1977 1978 1979 1980	66.0 81.5 93.3 110.2 116.1	$\begin{aligned} & 51.3 \\ & 59.7 \\ & 75.1 \\ & 92.0 \\ & 94.7 \end{aligned}$	$\begin{array}{r} 99.7 \\ 104.1 \\ 105.5 \\ 103.3 \\ 113.4 \end{array}$	$\begin{aligned} & 129.1 \\ & 131.1 \\ & 117.8 \\ & 116.0 \\ & 108.1 \end{aligned}$
Greece				
1976 1977 1978 1979 1980	$\begin{array}{r} 72.3 \\ 85.1 \\ 88.6 \\ 123.3 \\ 115.9 \end{array}$	$\begin{aligned} & 51.3 \\ & 59.7 \\ & 75.1 \\ & 92.0 \\ & 94.7 \end{aligned}$	$\begin{array}{r} 91.2 \\ 92.5 \\ 99.9 \\ 105.5 \\ 109.6 \end{array}$	$\begin{aligned} & 154.6 \\ & 154.0 \\ & 118.2 \\ & 127.1 \\ & 111.6 \end{aligned}$
Belgium				
1976 1977 1078 1979 1980	69.7 77.5 95.5 111.3 116.5	51.3 59.7 75.1 92.0 94.7	$\begin{aligned} & 101.0 \\ & 101.2 \\ & 105.5 \\ & 105.4 \\ & 117.5 \end{aligned}$	$\begin{aligned} & 134.6 \\ & 128.2 \\ & 120.5 \\ & 143 . \\ & 104.8 \end{aligned}$
1) The Components are defined in the text.				

In Greenland there are similar facts. Growing catches require great oforts to seli the fish in the world market. this hat becn achieved by increasing market shares in: the trade with Dermark, France, Sweden and other OBD countries.
On the other side there are sawe countrjes like crmany, Groeg and belgiun whose competitive carponents of trade are decreasing over the whole time neriod From 1976 to 1981 . Fhut Fer these ocuntries it is difficult to conclude that this sovelopment is a airect onsequence of a deveriorating camet itive position, because rist catches in these oountries are declining or hate very difforent structure within the period observed.
To analyse all the other coumtries in this payer for the prosent conference, tine failed re but in ant torking on a larger study in which separate markets will also be analysod.

3 Sumary
The objective of this paper was to present a method which enables us to give a quick overview of trade flow develoments in a world trase matrix. This has been achicved bi making use of information theory. Based on this method abstract trank coefficients have been calculated which are a direct measure for trade intensity. Futhermore the trade flow development has been divided into a structural and a The interprotation of these ocrponents, however, is only possible if additional market intive campcryent. inform is available because this kreak-down of the two conponents supposes certain relationships in the field of trade activities of an export country and of supply-demand elasticities.

Peferences

Bihn, W.R., Die infornationstheoretische Messung von Struktursystenen des internationalen Handels. Freiburg im Ereisgau 1967.

FFO, Yearbook of Fishery Statistics. - Fom.
Henkner, K., Quantifizienung von Wetthewerbs- und Struktureffekten in der Exportentwicklung ausgewähler Incustrienationen 1954 bis 1967. - DIW-Beiträge zur Strukturforschung, H. 15. Berlin 1971.
orod, Foneign trade by Cumodities. - Paris.
Sharman, C.F., A Mathematical Theory of Commication. - Bell system Technical Journal, Vol. 27 (1948), p. 380 £F.

Sonmer, U_, Die Stellumg der deutschen Seefischerei im Weltnarkt fïr Frostfisch. - Agrarwirtschaft, Sh. 55. Hannower 1974.
Theil, H., Econarics and Infomation Theorie. - Studies in Mathematical and Managerial Eonkmics, Vol. 14. Amsterdam, Landion 1967.

Uribe, P., C.G. de Lexum and H. Theil, The Infomation Approach to the prodiction of Interregional

Fisheries and Seafood Market Development

Non-Tariff Barriers to Trade in Fish and Fish Products With Special Reference to the EEC

Ian Scott
Nautilus Consultants
Marlborough, England

Abstract

This paper examines the nature and type of non-tariff barriers which may afect flows of world trade in fish and fishery products, together with thefr compatibility witr the provisions of GATT, Finatly, the principal VFBs litilised by the EEC are examined in greater detail.

1. Introduction

One of the ramifications of the change in the international fisheries regime has been the need and the opportunity to expand international trade. - / This expansion has beer required in order to maintain the supply position of those countries who were "losers" in the allocation of fishing rights out to 200 miles, and to enatle the "winners" to move towards a maximisation of the economic returns fram their available resources. The subject of this paper is one factor which may irhibit the ability of an exporting country to penetrate a target market - Non-Tariff Barriers (NTBs). There are other factors to be taken into consideration when looking at the potential for trade. None of these are covered and no attempt is made to measure the relative importance of NTBs compared to such other factors. Examples of other constraints include the existence of tariff barriers or constraints in catching or production in the exporting country. Particular attention is paid to the EEC market, but this does not necessarily imply that EEC practices are more onerous or less onerous than those of other countries.
The paper first reviews the type and nature of NTBs and sumbarises the position of the Ceneral Agrement on Tariffs and Trade (GATT) ${ }^{2 /}$ with regard to the various practices. Coverage of the EEC details the overail size of the import market and provides an assessment of the most significant NTBs which may affect trade to the Community.

The basis of this paper is the work which was carried out for the fational Marine Fisheries Service of the U.S. Department of Connerce. ${ }^{3 /}$ Analysis within the report has been expanded upon where required. This paper does not set out to deal explicitly with the problems of the U.S. exporter. 0ther countries covered in the NMFS study were Australia, Japan, Republic of Korea, Mexico, Venezuela, Erazil, Canada, Spain and Nigeria.

2. Non-Tariff Barriers

NTBs can take many shapes and forms reflecting government policies and public and private practices. Because NTBs are so wide bearing they can represent many problems to potential exporters wishing to expand their markets, but who rema in unaware of possible hindrances. In order that this lack of knowledge may be countered to some extent by the provision of information, the fho have issued a register of import - regulaticris, 4/ and thfs infornation is regularly udated.
To take the fullest possible atcount of NTBs in a targeted market potential exporters need to be aware of such detail as the current balance-of-payments situation, the strength of the respective currencies in the world market, political climate especially with reference to imports and normal trading relationships. Such factors can be inportant parameters in deciding the success of an export venture, but individual companies say not have enough resources to take fully into account such factors.

NTBs can be ambiguous and difficult to legislate against. For example, ore couid take tastes and preferences in a country to be a NTE if the product of an exporting country is not favoured. Possibly the only means by which such a problem could be overcome would be to finance a sustained marketing programe - perhaps to the benefit of competitors in the market.
The imposition of NTBs can be immediate and effective. Perhaps tre best example, althaugh outside fisheries, of such a mechanism concerns the French routing video taje recorder (ψ (R) imports through an undermanned inland customs port. This had the desired effect of substantially reducirg imports of WrRs, and the measure was withdrawn only after trade negotiations with the exporting country led to limits on import quantities.
Such Nifbs as noted above can be regarded as abstract and informal, and they cover many facets of a nation's economy. The FAD register assesses the more formal regulations under a variety of headings. (i) Administrative; (ii) Technical; (iii) Import requirements; and (iv) Other regulations affecting imports.

(i) Administrative

Broady speaking this heading covers licenses, foreign exchange, customs evaluation and import surcharges. Within GATT a code on licensing has been negotiated and it defines those procedures which are restrictive to international trade. The code's general approach is that licensing procedures shall be neutral in application and administered in a fair and equitable manner. The allocation of icenses should take account of the import performance of applicants in recent periods and new importers should be given consideration. Licenses should not have trade restrictians additional to those caused by quotas.
Import quotas are related to licensing and can have a substantial effect on the possibilities of exports to target markets, and as such can be used by the authorities to protect domestic producers by restricting supply. Japanese practices are perhaps the best example of how quatas can work. 3/
GATI Article KI proscribes all forms of prohibitions or restrictions other than duties, taxes or other charges, whether made effective through quatas, import or export licenses or other measures unless instigated to meet problems of standards. grading or marketing.
Import surcharges are proscribed in GATT Article III. Within the EEC, the German practice of levying VaT on the value of goods plus duty is, in essence, discriminating against imports, and thus contrary to GATT provisions.

(ii) Technical regulations

Stringent health standards for imported goods can be used in such a way as to be discriminatory against imports, e.g. there may be differential requirements over the level of mercury content allowed for domestic and imported goods. Standards covering product specifications, labelling, marketing and packaging can be detrimental to an exporter's efforts. This is particularly so when it is a small company which is trying to reduce the overhead cost of entering a targeted market. Stringent product specification standards can substantially increase the cost of producing for one particular market.
The GATT agreement on technical barriers to trade is designed to eliminate the use of standards and certification systems as impediments to international trade. Participants to the Code are required to use international standards with only limited accepted reasons for departure from such standards. Imports must be treated in the same way as domestic products, and disputes can be referred to a committee of Technical Experts.

(iii) Import requirements

tmport requirements are susceptible to use as a means of controlling or restricting imports by changing detalls at short notice. This type of barrier covers documentation, weights and measures, insurance, methods of quating and payment. Extremely detailed requirements can make the physical task of importing so onerous as to make it not worthwhile for smialler companies.
The only part of GATI which refers to import requirements is Article vill which dictates that fees for
 to domestic producers.

(iv) Other regulations

Tho turther principal mechanisms can affect trade.

Firstly, discrinipatory licensing of traders can lead to distortions in international trade. For example In forper years the japanese quota for herring imports was allocated totally to the body representing the ierring catchers. the Hokkaido Federation of Fisheries Co-operatives, in whose interest it was to restrict supply and therefore fincrease prices for their members. This was contrary to the terms of Article cill of gat.

Secondly, there is State trading. Article XUTl of GATT says that there should be no discriminatory treatment on the part of state-trading enterprises, with any purchases ade in accordance with purely commersial considerations.
In addition to the above it is useful to take into account two other possible forms of NTBs; subsidies and minimum import prices.

(i) Suls idies

Domestic subsidies can harim the trade of a third country eftior in totat or to a target market by maing domestic producers more competitive than they might otherwise have peen, thus givinc them a larger share of world result in injury to the donest ic industry of another country or nullify or impair benefits accruing to that country; including tarift concessions which, had previously been negotiated. Furthermare, subsidies should not be applied i_{i} a nanner which results in a contracting arty having more than an equitable share of the world exports in a particular product. In addition, export subsidies should not be granted in a manner which results in prices materially below those of other suppliers to a particular market.

(ii) Minimum import prices

Minimum import prices can restrict the ability of an exporting country to penetrate a market. This may happen firstly, because it loses a particular country possibie cost advantages in praduction, and secondly, by spreading over a wariety of genuses of the same species may lose the cheaper species their melative price advantage, if one asserts that minimum import prices are a charge or imports than they are not allowed ty GATT. As previously stated. Article $X 1$ proscribes restrictions other than duties, taxes or other charges, while Article II provides that aroducts inciuded in hound sihedules shall be exempt from all ott:er duties and charges in excess of those imposed on the date of agreement.

3. Trade to Europe

The EEC consists of 10 member states whose fishing industries vary to a marked extent. on the demand side of the equation the markets of each country vary with tirferent preferences for species, product forms and varicties. Although the eventual aim is to harmonise national measures to standards set by the EEC, this is by mo means an easy task, and even when completed individual markets within the ifC will not. form a microcosm of the whote. On the supply side, each country experienced differential effects rom the change in fisheries regime, and the size and type of fleets differ markedly from country to country. The aims and aspirations of the fishermen in the individual menter states alsodiffer wideiy, as can be testified by the protracted negotiations over a reformulated Common fisheries Policy. However, within the EIC as a whole there is a strong commitrent to the fisheman, as to other primary producers, and the policies of the European Commission reflect this commitment.
The value of the EEC market to world trade is evident when one considers that in 1980 the wial import value for all members was in excess of $\$ 4,500 \mathrm{million}$ of fish and fish products for human consumption. and $\$ 630$ million of fish meal and ail.
Two principal mechanisms which interfere with trade in fishery products to the EEC are the reference price system, which effectively sets mininun import prices, and the system of export refunds.
Under the reference price system the Commission of the EEC can suspend imports of produce at prices below reference price, and must state its response to imports if they enter member states at below reference price on three consecutive days. For some species, such as herring and tunny, the commission's response is limited by prior trade agreements, to applying countervailing duties which would raise arices to reference levels.
It appears that the EEC fisheman has been afforded extra protection in recent years, with reference prices inflating mare rapidly than guide prices (on which they are based) and withdrawal prices. In addition, in 1981, the reference price system was expanded so that 7 ing and dogfish were added to the basic coverage. Furthermore, reference prices are fixed for all products covered irrespective of their presentation on import - thus coverage was expanded to include processed fish forms. This increased protection reflects EEC discretion to take into account producers" incomes and future supply and demand projections, whereas previously decisions were based on performance only.
For the U.S.A., Pacific cod exports to the EEC are militated against by the high reference price for cod
 extending reference price coverage to species not caught by fishermen ot the meavei jtutbo, bet whirh compete with EEC produce. Sy keeping the average price of traditional species high there is an Invitation for import substitution which can only be kept in check by barriers to entry.

The NTB study poses the key question as to whether the reference price system eperates as a charge on imports and not merely as a price below which the product cannot be iopported. It can be argued that compliance with the reference price if borne by the seller is an additional charge contrary to article II of ENTT. Increases in reference prices vis-a-vis guide prices and greater coverage of the system are
thus also against gatt provisions. Reference prices do not appear to be part of a government programme to control production, and thus do not gain exemption from the GATT provisions

It should be noted at this stage that import suspensions have been nather infrequent in past years, which is indicative of a slowness in response on the pert of the EEC in the years previous to 1981 , and also the degree to which exporting companies conform to the required level of prices, or do not export at all.

The EEC has in the past set export refunds to enable economically important exports. This was particularly significamt in retation to the sale of mackerel, in the main to west African countries, principally by Dutch and British interests. Such refunds allow the EEC to export mackerel at prices be low what would otherwise be possible and in general below warld price. The need to do this was due to competition from Soviet Bloc countries selling the same product into the same markets at prices substantially below what mormal commerial practices would dictate. However, to the extent that such export refuncs could stop the establishment of an export trade by other western countries they are not allowable under the provisions of GATT.

Whereas there are a fost of regulations within EEC member states concerming administrative dnd technical regulations and import requirements, 4 it is not believed that they substantially affect the ability of a third country to enter the market of a member state or discriminate against those third countries. For example, ficensing for imports of fishery products is reguired by each of the member states but they are granted automatically as long as the import is not subject to some safeguard action. But the plethora of state aid given to the fishing industry by individual countries could be construed as an export subsidy dependent on the trade enduced and the effect of such trade on the other signetories to GATT.

4. Conciusion

The aim of this paper has been to outline the variety of factors which must be taken into consideration when examining the role and effect of NTBs. As such, this paper only represents a superficial examination, with the working of trade policy being a complicated issue which requires prolonged and detailed consideration.

To conclude it may be useful to encompass the thoughts of other people on trade issues.
In May, 1983 , an DECD ministerial meeting $\frac{5 /}{}$ agreed that as economic recovery proceeds then it provides favourable conditions which shovid be used to "reverse protectionist trends and to relax and dismantle progressively trade restricting and trade distorting domestic measures." So there is a need for the growing volume of fish trade to be brought under multflateral surveillance and submitted to multilateraily agreed rules, with perhaps joint action under JNCTAD and GATT to decide on and enforce concrete action to roll back protectionism. As Franco- concludes in his paper "As regards non-tariff measures. an improved system of notification as is currently under consideration in most countries participating in multilateral trade agreements could result in a significant step towards a better krowledge of existtag systens and a possible negotiation of their nomative simplification or removal."

References

1. "OECD Work on International Trade in Fish and Fish Products". Paul Adam in "Proceedings of the International Seafood Trade Conference", Alaska Sea Grant Report No. 83-2.
2. "General Agreement on Jariffs and Trade", Volume 1, United Nations.
3. "A Study on the Impact of Non-Tariff Barriers to U.S. Trade fn Fish and Fish Products", prepared for the U.S. Department of Commerte (Contract No. NA-8I-SAC-00636), S.F.I.A., Joseph W. Siavin \& Assoctates, ICF Inc. and P. Lance Graef, March 1983.
4. WRegister of Inport Regulstions for Fish and Fish Products", F.A.O. GCP/INT/345/NOR,
5. "Proposals for Dismantifing Protectionism", EFTA Btulletin, 1/84.
6. International Trade in Fishery Products: Issues for Developing Countries". R. Franco in "Proceedings of the International Seafood Trade Conference", ATaska Sea Grant Report Mo. 83-2.

King Crab Trade and Exploitation: The Chilean Experient

Gustavo Montero and Frederick J. Smith
Department of Agricultural and Resource Economics
Oregon State University
USA

The growth and the more recent rapid decline of the Alaskan king crab indistry has been well documenter Alaskanking crab production fell from a record high of 185 milian pounds ir 1980 to 34 million pounds in 1983. Alaskan King crab production continues to decline with seascn closures during l983-84. Forecasts are for continued low production through the mid-1980s.

This rapid change in $\dot{\mu}$ laskan crab production has had dramatic impacts upon world crab trade. Alaskan Tanner and Dungenness crab have become more important in world trade. Also Eastern Canada Tanner crab has entered the void left by the decline of Alaskan k ing Crab . Imitation king crab meat has found rapi acceptance as Alaskan king crab prices skyrocketed. United States consumption of this product is currently equivalent to 100 milition pounds of live king crab.

King crab is not unique to Alaska. Industry scientists in Chile and the JSA agree that Chilean king or possesses the same organoleptic characteristics as the Alaskanking crab. Chilean king crab productior has increased steadily from about 856,000 lbs. in 1970 to $2,946,000$ los. in 1982 (Table l). while thic is significantly less than former Alaskan production and imitationking crab meat production, it does represent a direct substitute for the frest frozen Alaskan product.

In this paper we will share some of the production characteristics of the thilean King crab and speculi on the future of this product.

Table 1. Chilean King Crab Landings, 1970-1982 (tons)

Year	Landing
1970	428
1971	372
1972	351
1973	511
1974	609
1975	1,028
1976	1,721
1977	1,908
1978	2,265
1979	1,351
1,280	
1981	1,473

Source: SERIAP

Biological Characteristics

The comon Chilean name for king crab is Centolla. It is found from chiloe (45 degrees south) to the of south America (55 degrees south). In the Atlantic, it is found from Camarones (44 degrees sonth) t_{1}
the Beagle Channel, inituding the ralkland Islands. The crab is harvested from the beach to depths of 220 meters.

Average size at sexual maturity is 80 mm to 90 mm cephalothorax length, depending upon the geographic location. Spawing takes olace within a 30 day period and in the Magellanes area this octurs from early December througt the first week of danuary. Spawning is usually in water of less than 20 meters depth.

Tagging experiments indicate that the crab does not migrate far. The crab tends to aggregate when young, especially in shallaw bays.

Net captured crab sizes vary from 50 mm to 180 mm cephalothorax length in males and 50 mm to 145 mm in females. There are significant differences in crab sizes between harvest areas. Much of this is attributed to the level of exploitation.

Production Characteristics

There are six types of boats used in the harvest of chilean king crab. These range form small wooden boats of less than 7 meters length and oar powered, to 22 meter steel boats with hydraulics and a crew of 6 to 12 .

Prior to 1980 crab were harvested with a net. This practice was outlawed in 1980 and since then the crab are harvested with a $160 \mathrm{~cm} \times 60 \mathrm{~cm} \times 47 \mathrm{~cm}$ trap. These traps are usually fished by hand and set in units of eight. The legal season is July 1 to January 30 . Fisting is usually continuous during this period, depending upon market conditions. However, about 78 percent of the recent years landings have occurred between October and January (Table 2).

Table 2. King Crab Totai Landings (tons) per Month, 1980-81 Season

Month		Landing
1980: July		21.4
August		93.1
September		151.7
October		182.7
November		288.4
December		289.0
1981: January		205.0
	Total	1,231.3

Production began in the early 1960s and was most mportant in the southernmost region, XII. More recently procuction has increased in regions XI and x. Production rose steadily to a high of 4.5 million pounds in 1979 and has waried around 2.7 allition pounds since that tine.

Chilean Exports

Chilean King crab exports increased from $\$ 4,600$ during 1972 to $\$ 6,144,000$ during 1982. Exports increased steadily from 1972 to 1979 . Since 1979 exports have ranged from $\$ 2.2$ million to $\$ 6$ million (Figure 1).
Monthly 1979 through 1982 export data indicate that over 60% of the exports occur in the last quarter of each year (Figure 2). During 1979, 902 of the exports occurred during this time.

From 1977 to 1982, Europe was the most Important Chllean Xing crab exports destination absorbing an average of 61\% for that pertod. Morth America and the rest of South America were the other major exports destifnations. However, there has been a tteady increase in the exports proportion to North America.

Product Form

King crab is exported as either frozen or canned. Hovever, there are at least 6 different types of can packs and 9 frozen product forms. For exacple, the cinned wat gy be to brine, may be a pate, or ray be mite or fixed meat. The cans vary from 110 to 240 gris met witht pucked 240 or 48 to the box. frozen

Figure 2. King Crab, Exports Seasonality Source: ODEPA

Figure 3. Camed Production - Market Share (Exports)

Figure 4. Frozen Products Market Share (Exports;

Table 3. Typical Canned King Crab Product Form Exported from Chile

Commodity	Type of can		Weight GRS		Packaging	Box l9.
			Net	Drained		
King Crab, in brine		307×113	180	130	24×180	4.3
King Crab, in brine	Aium	57	240	175	24×240	5.7
$\begin{aligned} & \text { King Crab, } \\ & \text { pate } \end{aligned}$	A)	69	100	90	48×100	4.8
King Crab, pate	Alum	69	210	150	24×210	5.0
King Crab. white			110		48×110	5.2
King Crab, mix			110		$24 \times 2 \times 110$	5.2

Source: Pesquera Magallanes and Pesquera Cado de Hornos

Table 4. Typical Frozen king Crab Product Form Exported from Chile

Commodity	Type of Block	Packaging	Box (kg)
Frozen meat	500 gr.	18×500	9.0
Frozen meat	250 gr .	36×250	9.0
White meat	500 gr .	18×500	9.0
White meat	250 gr.	36×250	9.0
Cooked meat			10.7
Legs and claws			5.0
${ }_{\text {Neat }}$ Clawith shell			5.0
Meat with shell whole shell			27.0

Source: Pesquera Cabo de Hornos

From 1977 to 1982 the proportion of frozen to canned product changed dramatically. Frozen product Increased from nearly ox of the total in 1977 to nearly 908 in 1979, dropped back to about 6% in 1980 and was back up to about 75% in 1982 (figure 5).

Marketing

Only soall amounts of King crab is marketed domestically in chile. The Chilean industry is dependent upon exports. In spite of this dependence, the Chilean industry has not developed product identity or differentiation. The export industry believes that there 15 confusion over their product. Chilean exporters attribute thetr generally lower product price to this confusion and not to differences in product composition or quality, During 19a3, several Chilean exporters engaged marketing consultants to address this perceived problem and have solicited the assistance of Chilean Trade Promotion Bureaus in
San francisco and wew york City.

Prior to 1979, there wowe fer chilean hling crio companies, but they grew in size as production increased. After 1979, there has been an increase in the number of companies, as well as increases in size. However, production froe these compantes is far from steady, with several completely discontinuing production some years. This variation is not eastily explaimed by variation in production. There have

There are about 9 comonies that appear to be steady producers and exporters of king crab. of these, 4
produce only frozen product and 2 produce only cuwned prodet:
-

Figure 5. Frozen Chilean King Crab Exported as a Proportion of Canned Exports Source: ODEPA Statistics

Table 5. Chilean King Crab Industries, Season 1980-81 and Product Form Capabilities

Industry	Product	
	Canned	frozen
Pesquera 20 Oeanos		*
Pesquera cabo de Hornos	*	\times
Pesquera Baray		\times
Pesquera Wagal 1 anes	x	\times
Pesquera Punta Mar		\times
Coop. Pescadoes de T del Fuego	x	
Pesquera Polo Sur Soc. Pesquera Mciean		x
Soc. Pesquera Mclean	*	

Source: Instituto de la Patagonia

conclusions

While the King crab industry is relatively new in Chile and much has to be learned about the population dynamics, there appears to be potential for increased and steady future production. The prouart is clearly a market substitute for Alaskan king trab, which has suffered a severe production decline during the past 3 years.

Chilean companies involved in the export of k ing crab products have experienced large variations in export volumes and product composition. Domestic economic factors have contributed to these companies difficulties. There is an effort to learn more about the export markets and to join with United States importing firms. Potentially this will increase product standardization and stabilize the Chilean product market.

In spite of improved crab production information, and improved market arrangements, the potential reviwa: of the Alaskan King crab incustry and possible economic instability in Chile will continue to cast an atmosphere of uncertainty over the chilean King crab industry.

Development of a U.S. Surimi Industry

Sharon E. Gwinn
Alaska Fisheries Deveiopment Foundation
Anchorage, Alaska, USA

Despite its geographic isolation, Alaska has in recent history been a major participant in global economics, by wirtue of its abundant natural resources. The far-reaching influence of klondike gold and Prudoe Bay oil is about to be matched by a living, renewable mar ine resource, Alaska pollock. About $\$ 150$ million worth of this small cousin of the cod, taken from Alaska waters each year, is the focal point of an international scramble for shares of a U.S. market exploding at more tham loo percent annal growth.

Surimi is a homogenized, white, flavorless protein paste, made by washing minced fish muscle in fresh water. Sold in frozen ten-kilogramblocks, it is the raw material base for hundreds of different food products, fron shellfish analogs to imitation mushroons. Two unique properties of surimi -- its ability to form a fine-textured gel at low temperatures, and its capacity for being restructured -- give the material unsurpassed versatility in the "architectural foods." Food scientists refer to these capabilities as "functional properties."
As we discuss the prospects for development of a f.S. surimi industry, it is essential to recognize surimi as a material, not a fish. Surimi can be produced from alnost any fish species. Once the sur imi is made, it is impossible to determine its original identity. In this characteristic lies the explanation for Alaska's strategy of using surimi as the key to the future of our fisheries.
The process for making surimi is illustrated in Figure 1. Round fish are headed and gutted, then minced in a deboner/meat separator. The minced flesh is washed and rinsed in fresh water, to remove blood. enzymes and other water-soluble proteins. A mechanical refining process removes any scales, bone particles or connective tissue from the washed mince. A screw/press dehydrator is then used to bring water content down to 75 to 77 percent. At this point the mince, with a consistency like that of mashed potatoes, is blended with small amounts of additives (sugar, sorbitol, polyphosphates) which will stabilize the protein and preserve its functional properties during freezing and cold storage. The secondary processor or kamoboko manufacturer will partially thaw the surimi and mix it with extenders, flavor and color to produce a finished product, as outlined in Figure 2.
The asterisks (*) on the diagram in Figure 1 mark important points. First, note that the surimi process requires large amounts of fresh water. Second, note the variety and quantity of by-products. fhird, you can see that the final yield of surimi from round fish weight is a mere 22%.

The importance of recovering the value of by-products is obvious. It is presently unclear to what extent this is done in Japanese surimi plants. With surimi yields of 22%, it is also clear that unless by-products make a large contribution to the profit nargin, the raw fish had better be very inexpensive. Though the processing of pollock at sea facilitates superior quality of surimi, the fresh water requirement is a severe and expensive limiting factor for offshore operations. It is often assumed that: the need for higher quality surimi is responsible for the trend of Japanese industry toward increased surimi production at sea, but in light of these points, one wonders if the shift was made in order to reduce the price of the round fish.
Japan was the cradle and is still the priwary domain of the surind industry. Including the finished (kamoboko) products, the industry is morth more than $\$ 5$ bilition in transactions annually. This is one industry built by Japanese business, governent and academia cooperatively, without benefit of any American innovations to copy.
What gives Alaska the audacity to attempt competing in this area? The answer is the Pacific pollock, a small. White-fleshed moer of the cod fanily. This creature is so abundant that it comprises the

Figure 2. Kamoboko Production
largest single fishery blomass in the world: so dense as to proyide catches of two tons a minute; and inexpensive enough ($\$ 90$ per metric ton) to compensate for the low yield of the surimi process. By itself the Paclfic pollock represents 75% of the growth potential for American fisheries within our Exclusive Economic Zone. It is too large an opportunity to ignore.

Every year more than three billion pounds (1.5 willion tons) of pollock are harvested in U.S. waters off Alaska, almost entirely by foreign factory trawlers and floating processors. Largely through politically motivated negotiations, Joint ventures now linvolve American fishermen in catching about 300,000 metric tons per year. Mo shore-based U.S. processors currently handle pollock on a commercial scale. A few U.S. factery tramers process pollock when the more valuable groundfish species are unavailable.

The traditional approach to fistery development in Alaska has been the demonstration project. A tean of progressive individuals with many years of experience 1 m the seafood industry devises and tests out a combination of catching, handling and processing methods, in en effort to prove the huge groundfish resource can support economically viable U.S. businesses. This approach is suitable if one wishes to use fisheries devel opaent funds to support as many apparently good tdeas as possible. However, it is not very effective if one's objectlue ts te freate apportunlities for an industry.

It is easy to understand why the hlaska seafood industry would pursue fishery development goals by doing demonstration profects. Environmental and econonic conditions place constraints on technfoll alternatives, so thare are considerable uncertainties to the rabolved th the practical sphere before we can even consider prof itability, More sigificantiy, a wiversal charteteristic of Alaska's fisheries is that trenendous quantities of fish or sheilifish mat be handled at fomote sites in very short periods of

of most of the worlo's king cray and salmon, and roud simply fiit orders coming from the marketing firms, whicn are all iocated gutsiof Alaska.
Now, the crash of the king orat fishery and increased salmon produttion on other countries force a review of priorities. Typicaly the progressive puointion at an indstry involues a shift fron production orientation townd maket or ientation. hilh the aif of externa infiuences, alaska fisheries gevelopnent Foundation is trying to accelerate thiz transition.

Once we adopted a market-oriented oerspective, our "pollock protulem was transfomed into the "pollock apportunity," The huge Alaska pollock resporce was to be the key ty integrating our seafood industry into the U.S. food industry. This integration would give us a "foot in the dogr" toward creating diverse market opor*inities that would, in turn, induce expansion of domestic processing capatity. gecause of its funtional properties and its wersatility, surimi could give us the broadest selection of pocential narket opportunities of any of the product choices awalabie from pollock.

The value of the Alaska pollock resolrce is no news to the Japanese. pojock represents apcut lo percent of the sapanese fish catch, and more than a third of the ir pollock :atcincores from Alaska watars. Almost all of the Alaskan catch is made into surimi at^{2} sea.
Japanese production of frozen surimi began in 1960, in shore pianis. That year's totat pack was 250 metric tons. The first forays into making sur imi at sea on large factory trawlerg occurred ir 1965. Figure 3 illustrates the general shape of the Japanese surimi industry ire the 1980 s. Witt about half of all surimi now being produced at sea, there is a continuing decline in the number of operating shore plants, which are concentrated on the island of Hokkado. Comparing Figures land 2 , you can see that surimi is extended dramatically in making the finished kamoboke products. Much of this extension is accounted for by water, which surimi will absorb in great quantities without deleteriolis effects on the product's texture.

At Sea	\% of Tatal	Production, metric tons			
		On Land	\% of Total	Total	Year
192,264	63	114,393	37	306,657	1981
198,534	58	142,000	42	340,534	1982
208,110	55	168,887	45	376,997	1983
224,444	55	183,315	45	407.759	1984

Imports, 1981
About $27,000 \mathrm{mt}$ cod surimi (origin USA, USSR), about $230 \neq / \mathrm{kg}$
About $8,000 \mathrm{mt}$ non-pollock surimi (origin Taiwan, Hong Kong, Thailand), about 480 \%/kg

Exports, to U.S.A., metric tons		
1978	677	
1979	681	
1980	703	(Other exports to Australia. Camada Europe.
1981	829	U.S.A. $=$ at least 90% of total.)
1982	1,114	
1983	1,709	

Figure 3. The Surimi inaustry in dapafr

If Alaska is to develop a surimi industry of its own, Japan is the only obvious market for the material right now. lmports of surimi to dapan are restricted by quota, heavily regulated, and closely watched. Import quotas are administered by the Ninistry of International Trade and Industry and the Ministry of Agriculture, Forestry and Fisheries.

Theoretically, a trading company or kamoboko manufacturer can simply request and receive an import allocation for any product allowed for in the 98 country quota. However, there is evidence that a surimi user who decides to purchase U.S. Surimi runs the risk of being cut off from present Japanese supplies. Until there is a reliable, consistent supply of surimi avalable from the U.S., inis is obviously a fool ish and unlikely move.

If you examine the distribution channels for surimi in Japan, you'll discover that more tham three quarters of the country's production is distributed through companies that are owned by or dffiliated with one of the two largest Japanese fishing companies. These same companies operate joint ventures in Alaska, buying pollock at sea from American fishermen, and also have controlling interests in J.S. seafood processors operating Alaska shore plants. The possibility of exporting u. S. surimi to Japan has recently become a subject of the annual negotiations between Japanese and Anerican seafood industry representatives. The negotiations are held to determine allocation levels for joint venture dnd foreign directed fishing operations, and to discuss the two sides' respective agendas for the futbre. In the case of the pollock fishery, the U.S. clearly does mot hold a very strong hand. But the industry-toindustry negotiations provide, for the first time in mary years, both a forum and a set of ofjectives on which fishermen and processors can work together as a concerted force. This cooperation is paramount in the develapment of a $U .5$. surimi industry.

A look at the Japanese kamoboko industry (Figure 4) gives us an idea of what might be in store for the future participants in the American market. "Kamoboko" is used here as a generic tern for several classes of finished products made from surimi. In Japan, the classes are distinguished mainly by the cooking method used, which may be steaming, broiling, or frying, In addition to the myriad of products called "kamoboko," surimi is also used to make fish hams and sausages, usually placed in a separate group in published production statistics. Though all kinds of kamoboko products have been sold ition ethnic markets in the U.S. for many years, it is the imitation crab products that have put the steep incline in America's consumption of surimi-based products over the last few years. The Japanese call these crab analogs "kanibc." "kanikama" or "kaniashi, " and export sales figures will usually be found ciassified ender the heading "other kamboko." The surimi-based crab products wholesale in the 11.5 . for about $\$ 2$ to $\$ 2.50$ a pound.

	Production, Thousands of metric tons			
		1982	$\underline{983}$	\% of total kamoboka
Fish cake (Kamoboka).				
	Steamed	352	347	35
	Brofled	188	195	20
	Fried	289	297	30
	Fish ham, sausage	95	99	10
	Initation crab	36	44	5
	Fotal	960	981	100
Exports: Mostly to J.S.A., Australia, U.K., New Zealand				
Year	U.S.A.	Tot		I to U.S.A.
1979	977			
1980	1,482			
1981	2,604			64
1982	7,332			78
1983	14,982			79
1984	15,650	18		82 (Jan.-duly only)
Surimi-Based Products, Frends, S of total production				
Year	Flsh Cake		Hanm	Imitation Crab
1973	83.5			1.4
1900	88.2			1.4
1981	87.6			2.7
1983	85.5			4.5

Figure 4. The Kamoboko Industry in Jtpan.

Only one American company, JAC Creative F oods in Los Angeles, makes crab analog products. Kibun U.S.A., an American subsidary of the largest Japanese kamoboko manufacturer, has built plants in Redmond, Washington and kaleigh, North Carolina. The majority of the skyrocketing u.S. demand or these products is met by imports fron an increasing number of Japanese as well as korean producers.

A glance at Figure 5 will show how important the U.S. market for shellfish analogs is to the japanese. These data are indicators of economic importance, but we must not forget that to Japan's largest fishing companies, the maintenance of market share for Japanese kamoboko in the U.S. is of strategic importance as wel?. As long as American companies can not compete effectively in that market, we with continue to give away the majority of the value of our pollock resource. The Japanese companies can continue to rening us that since we do not have the ability to process the fish, they are entitled to it. Even if all of our pollock were caught by U.S. vessels and made into surimi by U.5. pracessors, less than 15% of the total consunfer value of that fish would be accruing to American businesses. What we need is an American market for American surimi.

Year	Imitation Crab Production, mt	Exports	\% of Product Exported	L of Kamoboko Exports That is lmitation Crab
1978	16,615	340 (USA mily)	2	?
1979	17,589	977		35
1980	18,037	1,482		85
1981	25,300	2,604		86
1982	36,000	9,330 (total)	26	92
1983	44,000	18,829	43	92

Figure 5. The Imitation Crab Market
If we imagine what the American market for surimi could look like, given the material's nutritional advantages, functional properties, and ability to mimic all kinds of textures, we can visualize dast territory. As Jack Hice, the inventor of the fish stick, says. "The Universe is full of wonderful things, patiently waiting for our wits to grow sharper." Before our wits can be of any use to us, we must first draw a rough map of the territory. The list of U.S. food industry sectors in figure 6 is a start.

shellfish analogs	chips, snack foods
formed fish products	bakery products
processed meats	pet food
flavor carriers, extracts	neat extenders
sauces	dietary foods
seasonings	canned meats
pasta	dairy prodict analogs
soups, stews	non-dairy desserts
sausage, smoked foods	frozen entrees

vegetable analogs

Figure 6. Market Opportunities in the U.5. for Surm

Each of these sectors is likely to interpret the virtues of surimi differently fron the next. In a frankfurter, the surimi might be there to replace fat, bind water, carry flavor, or contribute texture. In a loaf of bread, it might be there as a protein fortifier. In a pasta, it might give just the right "mouthfee ${ }^{*}$ and provide essential amino acids without affecting the product's delicate flaver. The pric of surimi will, eventually, reflect the value of these contributions.

In some cases the material of choice might not be exactly surimi, but could be a washed minced fish, or even a "whole" mince, if the desire for a natural, unrefined muscle fiber is greater than the need for extended shelf life. Surimi is the "foot in the door" to the b.s. food industry. Once this versatile material makes the introductions, the creativity, efficiency and marketing skilis of that industry can take over, and bring into the $U .5$. economy the full value of Alaskats pollock resource.
To get surimi in the door, there is a terrific amount of inertia to overcome. Production-oriented seafood producers are unaccustamed to the technology of mechanized continuous processing and skeptical about the profit margin in pollock. Food processing tompanies are unfamiliar with fish and doubtfut of its marketing adyantages. Cold storage and distribution systems for frozen foods in the U.5. are in many instances inadequate for proper preservation of fish. Though surimi-based crab consumption has now surpassed that of the "real thing," Anerican consumers are not known for their attraction to seafood.
Fortunately, surimi's unique capabilities cam negate most of the assumptions underlying this apparently hostile marketing environment. Looking beyond its use in shellifish analogs, we might easily envision surimi as an ingredient in lunch meats, frankfurters, soups and sauces, pet foods, products for special diets, and ali manner of "imitation" or "entirely new" foods. The Alaska Fisheries Vevelopment Foundation wants to pronote the development of a diverse market for sarimi in the u.S., because diversity of markets translates into alternatives for producers, conveying to them the flexibility they need to stay in business and gain more economic stability. AFDF focuses on being a catalyst of market developnent, by reducing the cost of product development using surimi in American food comparies. We provide surimi, technical assistance and consistent encouragement to companies who want to evaluate the possibilities of surimi as an ingredient that can enlarge their market or enhance the ir profitability.
The market now taking shape in the U.S. for this versatile food ingredient promises to be entirely different from the one based in Japan. The highly automated U.S. food industry will require a material that is not only ayailable year round, but also produced to meet specifications (protequ content, texture-forming capacity, water binding capacity, color, etc.) within a lot of surimi, and from one lot to the next, will of ten de even more important than gradatians in quality. These purchasers of surimi will demand rigorous quantitative measures of all specifications of importance in their particular product, and will not pay for qualities they don't need. Sur imi will have to compete with a full range of alternative protein ingredients, including mechanicalisy deboned poultry, soy protein, egg albumin, casein, and wheat gluten.

Sweeping changes will occur in Alaska's seafood industry as a result of its introduction to the U.5. food busiazs. Groundfish orocessing will becone more mechanized and automated. Process control, cost accounting, statistical quality tontrol and other technical subjects will assume true high prior ity. If U.S. Seafood processors seize this new market opportunity successfally, the Alaska groundfish fishery
could actually be domesticated.

To conclude, it is clear that a U.5. market for surimi will develop, and probably eventually match the proportions of the Japanese market. The only real question is whether it will be nurtured and owned by Anerican businesses, or dominated by imported products and U.S. subsidiaries of foreign companies.
In closing, I would like to share a poem, written by an Alaska fisherman, that embodies the lighter side
of this story.

Sea-lami

Ohl wat dilemma the hogs and steers are facing
for now the flesh of fish is being stuffed in salasage casing!
Mixed to with the spices, no fin or scale is seen
And nutritional information states, it has the same protein.
So ingredients once rounded up by ropin' ridin' fellers
Are now coralled in nets pulled tight be fishin' boat propellers.
Io the ultimate dismay of the hog slopptn' granger.
Who finds the olnkers' future in no small amount of danger.
What the heck has happed, have we all gone balmy?
Cointing up new words; the latest one- SEA-LAMI.
Things will never be the 5 ame, it seems sorta phoney.
I can see it coming now. Can we stand- bay-Lowey?
HARRISOM SMITH
F/V SEA MLMER

Seafood Trade Models

Modeling Issues Pertaining to Fisheries Managemeı and Seafood Trac

Trevor Young
Department of Agricultural Economics
University of Manchester
England

It is sometimes argued (e.g. Pontecorvo, 1981) that in the fisheries economics area too much effort is experded in the construction of micro modejs and too jittle attention is giver to macro analysis. Most applied work, the argument goes, is conducted at the level of a single fishery, instead of within a broader framework. In this short paper, I wili attempt to categorise the work of fisheries economists according to the level of aggregation at which it is conducted, to raise some general issues confrontin model builders and to briefily address the micro ws. macro issue.

A Classification of Fisheries Economists' Models

As a number of authors have remarked, econonics is best regarded as a tool-kit. Any classification of these tools is necessarily an arbitrary one but nevertheless the usul dichotony of economic models int "micro" and "macro" seems overly restrictive in the present context. Instead I would prefer to denote three broad approaches to empirical work:-
(i) tools of a purely micro character
(i) tools of a mixed character
(i) tools of a purely macro character

Clearly the amalytical tools are ranked in order of degree of aggregation and I will endeavour to catatogue empirical work in fisheries management and seafood trade accomingly.
(i) Tools of a purely micro character

Here the researcher is concerned with the analysis of decision making by a single agent - either by the indiyidual consumer (although frequently neoclassical theory is extended, without modification, to the household) or by the firm. Studies of the former include, for example, the analysis of household budgets, product quality and labor supply decisions. Applied work at the firm level often deals with supply response and effictency measurement, usually based on production, cost or profit functions and utilising cross-section or mixed periodicity data.

In the fisheries economics area, the literature falling within the purely micro category has been scant Studjes conducted at the household or fishing vessel level include Colman and Young (1972), WAFF (1984) Sandiford (1984) and 0paluch and Bockstael (1984) but, outside these few examples, there has been very little research work of this type. The neglect of this class of analysis is to be regretted somewhat, since many of the current interesting questions concerning the marketing of fish products and fishermen response to market intervention may require the use of these tools.
(ii) Tools of a mixed character
 sense of maintaining the identity of individual markets and products. They could equally welt be terme "market models" since much of this type of applied work concerns the analysts of demand or supply at th" market level or the construction of complete structural models of individual comadity markets. In addition, however, the class wowld comprise input-output analysis, spatital equilibrium, general equilibríum and trade.

Host applied work on fisherfes economics would seem to fall under this mixed character heading. Certainly most. if not all, of the biocconobic models in the fishery managent area, although often
described as "micro" models,? must be catalogued here since they are constructed at the level of a single fishery, nat of a vessel. Moreoever, a number of structural models of individual fish markets have been constructed (e.g. Doli, 1972, Storey and Willis, 1978, Strand et al., 1981, Blomo et al., 1982, and $\mathrm{T}_{\text {soa }}$, 1982), and several studies of the denand for fish and fish products have been undertaken (e.g. Be11, 1978, Huppert, 1980, Crutchfield, 1982, Devoretz, 1982). On the other hand, the use of inputoutput models and spatial equilibrium as analytical tools is rare in the fisheries economics area. ${ }^{3 /}$ A discussion of general equilibrium and trade in seafood products is given later ifi this maper.

(iii) Tools of a purely macro character

Macroconomic models are constructed at the level of the national economy and address, inter altia, questions of output, inflation, growth and the balance of trade. It is often helpful to view macroeconomics as essentially a highly aggregated version of general equilibriur theory.

As fisheries economists, we are rarely dealing with pure macro issues. Macroecononic variables may be important determinants of variations in fisheries markets; yet this macro connection is ignored in $\begin{gathered}\text { icro }\end{gathered}$ or market modeling. For example, if the researcher is trying to deterrine the apportunity cost of labor in the fishing industry, as, say, part of a project concerned with reducing fishing capacity, then it may be pertinent to explicitly recognise that the probability distribution of opportunities outside fishing will be tied to macro variables such as the regional unemployment rate and that job search witl be affected accordingly. Perhaps the only area of modeling in which the interconnection between levels of aggregation is not neglected, is that of international trade. Namely, there have been a few studies which attempt to analyse the impact of exchange rate fluctuations or trade cycles on trade flows of individul products (e.g. Siegel, 1984).

In sum, although fisheries economists have at their disposal an impressive array of analytical tools. they have, for the most part, made use of only those of a "mixed" character in their empirical study of problems of fisheries management and seafood trade. This seems unnecessarily restrictive. However, as fisheries economists broaden the range of policy issues which they address, it is to be expected that the selection of analytical toois will also expand.

Recent Developments and Concerns

Over the last decade, a number of interesting developments and upheavals have taken place in the field of economic theory, and in particular, macroeconomics. Specifically, a great deal of attention has been given to the rale of expectations and uncertainty, to nom-competitive price formation, and to the phenomenon of disequilibrium. - Indeed as Hey (1981) has pointed out, at the current time economic theory itself is very muct in disecuilibrium. These new concerns of economic theorists can be incorporated into models in the fisheries economics area and indeed some have been both at the macro and market levels of aggregation. For example, the first issue of Marine Resource Economics was devoted entirely to aspects of uncertainty and fisheries economics. There has also been a limited amount of work on disequilibrium (e.g, fockstael, 1983) and this body of literature wight expand as fisheries economists turn increasingly to the analysis of quotas. More generally, these theoretical developments have been
viewed as a way of providing rigorous microfoundations to macroconomics- ${ }^{5 /}$ and it is to this question that I now turn.

Many would argue that a macroeconomic model or indeed a market model should not only provide an adequate explanation (or fit) of historical data but also ft should be founded on sound economic reasoning, and in particular on mationd economfc behaviour. If the latter is absent, then we have merely a statistical relationship, not an economic one, and that relationship may be completely spurious. In other words, we would be dealing int th correlation, without causality.

The importance of microfoundations has also been noted recently by Perry: "...tf we take seriously the ided that agents' reactions may depend on their enviromment, a good set of micro underpinnings could inform our thinking about how to bring about desirable changes in agents 'hehaviour. It might provide some basis for answering whether and how the reactions of agents might change in a different stabilization policy regime. It might also provide some basis for designing and evaluating policies that are almed more directly at changing the reactions of agents." (Perry, 1984, p. 402). Another view of microfoundations is that they offer rationale for what appears on the right hand side of a macro or market level regression.

Wiaite Limese arguments for microfoundations have much appeal, a fundamental issue for the applied economist seems to get side-stepped, f.e. the question of consistent aggregation. An appeal to microfoundations may help in establishing the variables to be included in a macro regression but the precise forit of the equation, th order to remain consistent with the micro fuaction. is still a major concern. The conditions for consistent aggregation are invariibly restrictive. The work on aggregation in the 1960 s (e.g. Green, 1964) bears this out and sore recott appraches to the problem (e.g. Lau, 1982) do not seen to be much more eacouraging. In other mords, there stili rialint wide gap between theory and empirical practice.

Another hardy geremiat ancin tre modeling issues is the delide on whetner gurtial equilibriur of general equilibrimm is tue epproriste approch in the study of irterational tade. The discussior rere wil? be con-ined to trose aspects which are relevant in the analysis of seafood arade.

Many empiricai trade sturies, garticularly of indiwidud fish products, are of d partici, ad boc type. At one extreme, the external trade variabte is assurned to be exogenous or pxpiamed as a residia! in a sectoral nodel (e.g. [iolf, 197 : and Storey ant wilis, 1978i. Perraps amore illuminating approach is to specify individal behavioural equations, typically in the firm of demand functions, althcugh the export
 Alternotively import and export share equations are estimated, again in a rather ad hos matimer, with the
 data problems which often plague trade studies, these models seem so work wite well on the usual statistical criteria and it is likely that the partiat approacn wili femain popular foice arong appiied economists.
Some resedrchers, however, hawe sought to invoke the more e"aborate paradigm known as general aquilibrium as the basis for their trade models which have been either econometrically based or some adaptation or multi-sectord phanimg models. A recent example of this aporoach is the model of the lnternational Institute for Applied Systems Analysis (IIASA) and it mignt ge informative to nutine trat model briefly. - - The JIASA rodel is a system of linked national agriculturd sub-models covering the warld food and agricultural system as part of the Food and Agriculture Programí (fap).
An important feature of this modeling exercise concerns the European Communties model, covering all EC countries, except greece. The genera? equilibrium scheme is illustrated for two countries in figure 1 .

Figure 1. A Schematic Outline of the EC Model (simplified for two countries).

Under the Common Agricaltural Policy, the EC mations first interact with each other and together they trade with other countries in the world market. In the exchange component illustrated, EC prices, demand and trade flows adjust, given total supplies and world mariket prices, until markets clear. The
 the full system can be solved for equilibrium prices and trade flows under a variety of poiicy scenarius.

For present purposes the important feature of the ITASA system is its commodity coverage. Table 1 shows that the EC sub-model covers 15 commodities including "fish". However when this submodel is linked to the global system, the number of commodities collapses to only 10 and the aggregate "fish" is combined with "pork, poultry and eggs". Indeed applied general equilibrium analysis. fncluding that reported in Scarf and Shoven (1984), deals by necessity with broad comodity groups, often considerably more aggregated than in the IIASA schene. A finely disaggregated system seems to be intractable.

Table 1. Commodities in EC Model and in FAP Model System

Ef Commodity List	IIASA/FAP Commodity List
1. Wheat	
2. Coarse grain	2. Wheat Coarse grain
	3. Rice
5. Dairy + ovine meat	4. Bovine + ovine meat
6. Pork, poultry, eggs	5. Dairy
7. Fish	6. Other animals
8. Protein feed 9. 0 ilseeds	7. Protein feed
10. Sugar	
11. Fruit	
13. Vegetables	8. Other food + beverages
13. Beverages and resid, other food	
14. Nenfood agriculture	9. Nonfood agriculture
15. Nonagriculture	10. Nonagriculture

I would argue that although the analysis of trade in fish in total may prove useful for a number of purposes, our interest in that broad aggregate is somewhat limited. More ofter we are concerned with the changing composition of that trade in response to various policy and market stimuli or with trade flows in individual fish species, such as satmon or, yet more disaggregated. Atlantic salmon.

Even if it were computationally feasible, a full-blown general equilibrium approach in the fisheries economics area would rarely be nerited, because the fishing industry does mot account for the targe percentage of national employment or of the total consumer buoget in most countries. $-\frac{1}{2}$ Even Frank Hahn, one of the most prominent defenders of general equilibrium, has stated: "The paradigm is of course of ambitious generdity and for very many important purposes a much more modest Marshalitian apparatus will do very well." (Hahm 1973, p. 41).
Ay alternative strategy, ${ }^{9 /}$ combining elements of the partial equilibrifum and general equilibrium approaches, would be to restrict attention to a subset of markets which have a strong, direct bearing on the confodity of interest or which would be affected markedly by a contemplated policy change. The ainn wald be to make the subset as comprehensive as possible white keeping the system tractable. Having constructed the subset of markets, it may be treated as an economy in and of itself. In effect, we woula have a restricted or constrained general equilibrium system. This approach may prove most useful when examining relatively broad palicy questions such as extended fisheries jurisdiction. Nevertheless, as a general rule it nay be argued that the more disaggregated the commodity in question or the more specific the palicy under discussion, the more likely that a partial model will be perfectly dequate.

Micro ws. Macro Models

Hoving outlined the array of analytical tools avaltable to the fisheries economist and some of the difficulties encountered with their implementation, the question arises: which tool is to be preferred The question, however, may be readily dismissed. It is futile to debate whether a particular modetiina methodology is a good one or a bad one; the worth of a tool depends entirely on the task to be performed or the problem posed. The complaint ralsed at the beginning of the paper, that empirical work in the fishertes economics area is not macro enough. is a criticism of the questions being asked, not of the way
in which the answers are derived.

In the past much research in fisheries economits concerned the construction of bioeconomic models reflecting the underlying biological and economic relationshtps. The models developed were entirely appropriate to the determination of optimal harvesting solutions, the key point of interest. While no broadenting their interests into a number of continue, it is also ciear that recently many researchers are policy analysis, marketing and international trade. As the flelds of research exphenmen's behaviour. selection of anatytical tools and perhaps even new technfouss may he furemted.

Footmotes

1. -his classification turoadly follows that of Reynulds (1971).
2. For example, see Hanmessor \{1978\}.
3. ©xamples of the use of irput-output include king anc Shellhammer (agen, Erigcs et al. (1782) and Froct (1983), : have been unable to 'ocate nny studies which use spatid equiliteributinalysis.
\therefore See for examp e Hey (1979, :981) and Denassy (1982).
4. See for example, Weintade (:979) and Bends5y (i982).

5. Thirty-eight countries are current'y included in the fap mode ${ }^{1}$ system.
6. This may not be the case in a mumber of developing countries but thert the cuerridimg comstiaint is ifkely to pe data availability.
7. See Just et ai. (1982), Ehapter 9.

References

Anderson, L.G. 1981. Economic Analysis for fisheries Managenent ptans, Ann Arbor Science.
Bell, F.W. T979. Food from the sea: The Economics ard Politics of Ocean fisheries. 'Nestwiew Pross. Colorado.

Benassy, \therefore - 1982 , "Developments in von-Walrasian Economics and the Micmoecomomic Faundations of Macroeconomics" in W. Hildenbrand (ed.: Advances in Economic Theory. Cambridge !friversity Fress.

Blomo, v.u., J.P. Nichols, W.C. Griffin and w.E. Grant. 1982. "Oynamic Medelling of the Casterm Gulf of Mexico Shrimp Industry". Amer.J, of Agric. Econ. 64: 475-482.

Bockstael, N.E. 1983. "Disequilibrium and Sedfood Trade Modelling", Proceedings of the Jnternational Seafood Trade Conference. Anchorage.

Briggs. H., R. Jownsend and J.A. Wilson. 1982. "An Input-Dutput Analysis of Maine's fisheries". Department of Economics, University of Maine.

Colman, B.R. and T. Young. 1972. "Expenditure on Fish by Households in Great Britain". 「ERU White Fish Authority.

Crutchfield, S.R. 1982. "Estimation of Foreign Wilingness-to-Fay for Umited States Fishery Resources: Japanese Demand for Pollock". Land Economics.

Devoretz, D. 1982. "An Econometric Demand Model for Canadian Salmon". Can.d. of Agric. Econ. 30: 49-60.
Doll, J.f. 1972. "An Econometric Analysis of Strimp Ex-Vessel Prices, 1950-1968". Aner.J. of Agric. Ecol 54: 431-440.

Farber, U., K. Frohberg, E. Geyskers, C. Megtir and P. Pierani. 1984. "Ihe IIAsA Food and Agriculture Model for the EC: An Overview". WP-84-50 IIASA, Laxenburg.

Frost, H. 1983. "An Imput-0utput Table with Particular Reference to the Danish Fisting Industry". Proceedings of the International Seafood Trade Conference. Anchorage.

Green, H.A.J. 1964. Aggregation in Ecomomic Analysis. Princeton University Press.
Hahn, F.H. 1973. On the Notion of Equilibrium in Economics An Inatgural Lecture. Cambridge University Press.

Hannesson, R. 1978. Economics of Fisheries: an introduction. universitetioreaget.
Hey, J.D. 1979. Uncertainty in Microeconomics, Oxford. Martin Robertson.
Hey, J.D. 1981. Economics in Disequilibrien- Oxford. Martin Robertson.
Huppert, D.D. 1980. "An Analysis of the United States Demand for Fish Meal" Fishery Bulietin. 78: 267-276.

 Output Analysis of california fisheries and Seafood Industrips", working Papor F-T-f. center of Marine Studies. San Diego State University.

Lau, L.J. 1982. "A Note on the Fundamental Theoren of Fxact Ag remation". [comamic etters f: 112-126.
 Annual Report of the National Food Survey Coanittee. $\overline{M S O}$

Opaluct, J. J. and N.E. Bockstael. 1984. "Behavioural Modelling and Fisheries Manegenent". Nerire Resource Economics 1: 105-115.

Parikh, K. and F. Rabar (eds.). 1981. Food for All in a Sustainable Worid: The llash Food and Rgriculture Prograni. IIASA. Laxemburg.

Perry, G.L. 1984. "Reflections on Macroeconomics". Anrer. Econ. Meview 34; 4je-4:7.
Pontecorvo, G. 198I. "Economic Analysis in Fishery Management PTans: Current". In L.G. Arde"sinn op.cit.
Reynolds. L.G. 1971. The Three Horlds of Economics. Yale University Press.
Sandiford, F. 1984. "How Can We Manage to Keep fishing?: An Analysis of Multiobjective Decisior-Making for the Scottish Inshore Fishery". Paper delivered at the annual Agricultural Econorics Society Conference. Cambridge.

Scarf, H.E. and J.B. Shoven (eds.). 1984. Applied Genera: Equilibrium Analysis. Camhridge liniversity Press.

Siegel, R. 1984. "U.5. Seafood Exports and the Exchange Rate". Proceedings of the Second Conference of the Enternational Institute of Fisheries Economics and Trade, Chiristchiuch, forticoming.
Storey, D.A. and C.E. Willis. 1978. "An Econometric Analysis of Atlantic Sea Scallop Markets". B. of the Northeastern Agric. Econ. Council 7: 111-118.
Strand, l. Jr... J.E. Kirkiey and K.[, McConnell. 1931. "Ecomonic Analysis and the Management of Atlantic Surf Clams". In L.G. Anderson op cit.

Tsoa, E., W.E. Schrank and N. Roy. 1982. "U.S. Demand for Selected Groundfish Products, :967-80". Amer.J. of Agric. Econ. 64: 483-489.

Weintraub, E.R. 1979. Microfoundations. Canbridge University Press.
Wilson, J.R. 1983. "Theoretical and Empirical Considerations of Worldwide Ocean Resource Zane Extensions and the Effects on Export Market Shares of Seafood". Proceedings of the Internationa! Seafood Trade Conference. Anchorage.
Young, T. 1983. "An Analysis of the Import Demand for Fish in the United Kingdom". Proceedings of the International Seafood Trade Conference. Anchorage.

An Econometric Analysis of Salmon Markets

Biing-Hwan Lin
Department of Lconomics
University of Alaska
USA

:ntraduction

Salmon accounts for a large portion of both the physical volume and ex-vessel value of the seafood tarvest in the water of the Pacific coast (Wood, 197). Jue to tr is relative importance armang fis neries and the distributional issues involving ditferent user groups of sulnan related resources (e.f., water and habitat), salmon has attracted considerable at tention among (fishery) economists in the Pacific Northwest area. To date, numerous research ffforts have been devoted to investigating salmon related issues, among them the attempt to identify and quantify the factors affecting the demand for salmeri products. An inexhastive 7 ist of previous demand studies includes vash and Ee? 1 (1969), 'Aduah ard vorton (1969), wood (197C), Onuorah (1973), Johnston and Wood (1974), wang (1976), Juhmston and Wang (1977), Muyo (1978), Abraham (1979), Swart7 (1979), and Devoretz (1982).

The usefulness of conducting a demand andysis is to obtain the empirical estimates of demand awn-orice, crass-price, and incone elastici:ies. The use of these elasticities in araing policy itplications is discussed in the rest of this saction.

In the past, the governments of Canada and the U.S. have spent millions of dollars in a variety of salmon erhancement programs aiming at increasing the stock and the harvest of salmon. Since the well being of salmon fishermen is one of the major public concerns in the salmor industry, an important issue that needs to be addressed is the impect of increased landings on the ex-vessel price and the total revenues received by the salmon industry.
Suppose curves $\mathrm{D}_{\mathrm{d}}, \mathrm{D}_{\mathrm{f}}$ and D_{t} (as shown in Figure 1$)^{\underline{1 /}}$ are domestic, export. and total demand for Pacific salmon, respectively. The vertical line $\$$ represents the landings of salmon before the salmon enhancement programs. 2/ The equilibrium price of salmon is set at P. Od and of are quantities consumed domestically and exported, respectively. The supply intersects the total demand at its inelastic portion, by construction. Thus an increase in landings (from S to S ') due to enhancement programs will depress the ex-vessel price (from P to P^{\prime}) at a yreater percentage (i.e., $\mathrm{PP} / \mathrm{OP}^{\mathrm{P}}>\mathrm{SS}^{2} / 0 \mathrm{~S}$) so that total revenues received by fishermen drop from PdSt to P'es'0. However, it can be shown that an increase in landings will increase fishermen's revenues if landings intersect the total demand at the elastic portion, say point g. Thus this example illustrates the policy implications (i.e., if the salmon enhancement programs will increase or decrease fishermen's revenues) that can be drawn from the results of demand analyses.
One important issue which should be raised here is that the ignorance of either of the two markets (i.e., domestic and export markets) will hamper the emprirical results in two counts. First, the total demand $\left(D_{t}\right)$ is nore elastic than the two individual demands (D_{d} and D_{f}). Ignoring efther one of the two markets will limit the usefulness of conducting such an analysis. Secondly, the empirical results will likely suffer from having \exists smu? tanones onustinns hias. linfortunatelv. most of previous demand studies have pursued this issue along the single equation framework.

This work is a result of research sponsored by the Oregon State University Sea Grant College Program and the University of Alaska Sumer Small Grant Program. The duthor gratefully acknowledges Richard S. dohnston for his suggestions for fimprovement and presenting this paper for me. All renaining errors are the auther's responsibility.

Figure 1. Impacts of increased Salmon Landings on Fistemmen's Revenues

The cross-price elasticity is another useful source of information which can be provided in a demand analysis. For example, canmed tuna ís considered as a substitute of canned salmon, Ife cross-price elasticity of canmed tuna will indicate the spillover effect of changes in the tuna market on the silforn market. Therefore, if a change in tuna market is anticlpated, we can predict the possible effect on the salmon market by examining the results obtained from a demand analysis.

Japan and Horway are competitors (both as consumers and suppliers) of North Arerica in the international salmon markets. The inclusion of the production levels of both Japan and Norway in the merket analysis will not only improve our understanding of the market but also enable the prediction of possible courses that the market will take when foreign production varies. This issue will receiva more attention because several salmon producing countries have expressed an interest in duplicating the successful salitar farming practice in Nomway. In the past, little attention has been patd to the issue of international compet1tion.

The above discussion polnts out the research direction of this study. The main objective of this study is to daprove our understanding of the factors affecting the Pacific salmon markets. To achieve this objective, two models have been estimated. The first model emphasizes the demand for Camadian canned salmon markets. Both export supply and export demand are estimated simultaneously by two-stage least squares and three-stage least squares. In the second mode] the Pacific (both canada and the \downarrow. S., salmon markets (both canmed and moncanned) are decomposed into two sectors (supply and demand). The allocation of salmon into canned and noncamned product forms is formulated by applying the Nerlove expectations models (Labys, 1973) and estimated by seemingly unrelated regression techniques. Then the supplies of canned and noncamme salmon are treated as erogenous yariabies for the submodel in which the export supply and export demand for both products are estimated by three-stage least squares techniques.

An Econometric Anatysis of the Canadian Canned Salman matuat

In the past. several studies have estimated the demand for canadian canned salmon. None of these sturjes attempts to estinate domestic demand and export dempen stempaneousty. In a recent pubification Devoreta (1982) stresses the need for disaggregating salson into diffareat fpecifes. However, the domestic demand and exports are dggregated into the wholesile dempd wheh is then giticiatod by both ordinary least

The landings of salmon and the supply of ednned salmon are assumed to be aerfectly price inelastic. Fhis assumption is usually made either explicitly or implicitiy in the fistery listerature. However, ant attempt is made to investigate the process of allocating landings into different product forms in the second rode:

Because Canadian canned salmon is comsumed both domestically and abroad, an interrational trade mordet is specified which contains two behavioral equations (an export supply and in export demand) and one identity (quantity exported equal to quantity imported) as discussed in the next section.

Model specification and empirical results.
The results of the structural estimation with wariable definition are summarized in Table 1. Eata sources are summarized in Table 2. Each functional form (for the behavioral equations) is assumed to be Fivitiplicative. The Canadian export supply is hypothesized to be negatively related to the real Canadiam income level, and positively related to the real wholesale price of canmed salmon, real whotesale price of poultry, ${ }^{3 /}$ and Canadian tandings of salmon. Ideally, the real wholesale price of canned tuna should be treated as a demand shifter. The price of canned tuna is ignored for lack of data. The export demand for Canadian camed salmon is hypothesized to be negatively related to the real wholesale price of canned salmon, the U.S. production of canted salmon, and Japan's landings of salmon. The export demand is expected to be positively related to the real U.S. income level, the exchame value of the canadian dollar in terms of the $U . S$. oollar, and the real wholesale price of canned tuna in the $4 . S$. Finally, the quantity exported by Canada should be equal to the quantity imported by the rest of the world from canada as specified in the identity equation.

Table 1. Structural Estimates and Variable Definition
I. The exchange variable is treated as an exogenous variable.

1. Canada's export supply of camned salmon:

$$
\begin{aligned}
& \begin{aligned}
&(2 S L S) ~ \text { XQ }= \\
& 6.21+2.40 C A P-1.20 C Y-2.49 W P C+0.84 P P C+1.21 L C \\
&(4.39)(1.41) \\
& \text { PRMSE }=0.0352
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
(4.28) \\
\text { PRMSE }=0.050 & (0.64) & (1.43) & (0.97) & (0.39)
\end{array}
\end{aligned}
$$

2. Canada's export demand for canned salmon:

II. The exchange rate variable is excluded from the model specification.
3. Canada's export supply of canned salmon:

4. Canada's export demand for canned salmon:

Note: numbers in parentheses are standard errors; coefficients are also efasticities; fRMSE denotes root-medn-squared percent error.

Jointly Determined Variables
CxO: Canada's exports of canned salmon in thousand pounds.
CWP: Canada's wholesale price of canned salmon, cents per pound.

Predetermined Variables

CY :	Canada's income level (million dollars) deflated by its wholesale price index.
WPC:	Canada's wholesale price index, with 1979 and 1980 figures beingestimated by a i incar trend model.
PPC:	Canada's poultry price index deflated by WPC.
LE:	Canada's landings of salmon, in thousand pounds.
UY:	U.5. income level (iode militon dollars) deflated by the b.s. whotesale price index.
ER:	Units of Canadian dollar oer unit of U.S. dollar, deflated by the U.S. wholesale price index.
UCQ:	U.S. production of canned salmon in thousand pounds.
JL:	Japan's landings of salmon.
TP:	Red price of cammed tund in the U.S.

Table 2, Data Sources, 1952-1980

Variables:-
$\mathrm{CQ}, \mathrm{FQ}, \mathrm{CWP}$.
FHP, TP NL

CXQ \& FXO

Y, Y'. \& ER

CSP FSP
$32 \& A L$

Sources

1. USOC, NMFS, Fishery Statistics of the U.S.

Various issues.
USOC, NHFS, Fisheries of the U.S., Various issues.
3. Statistics Canada. Annual Statistical Review of Canadiam Fisheries, Various issues

USDC. Bureau of Census, U.S. Imports for Consumption, Various issues. - U.S. Exports for Consumption, Yarious issues.

Trade of Canada: Export by Commodities, Various issues.
[MF, International Financial Statistics, Various issues.
UN Monthly Bulletio of Statistics, Various issues
USDA, Food Consumption: Sources of Data and Trends, 1909-63.
USDA, Food Consumption and Expenditures, 1960-80.
Agricultural Canada, Hafdbook of Food Expenditures, Prices, and Consumption, 1981. FAO, Yearbook of Fisheries Statistics, Various issues.

The model is estimated by both two-stage least squares (2SLS) and three-stage least squares (3SL5) techniques using the annual data for the period of 1952-80. The reported low root-mean-squared percent errors (PRMSE) indicate that the model appears to fit well. AII varfables have the signs consistent with a prlori theoretical expectations. Because the exchange rate variable and the price variable have similar coefficients in the export demand function. the hypothesis that the exchange rate variable and the price varlable should be treated separately is refuted and the model is reestimated accordingly. Both 2SLS and $3 S L S$ prowide similar results (see Table 1) which are interpreted here.

Since the functional form is multiplicatfue, the estimates are also the elasticities. The price of canned salmon, income, and iandings of satmon variables have the absolute elasticities greater than one in the export supply equation. By performing necessary manipulations it can be shown that the Canadian domestic demand for canned salmon is both price and fncome elastic. 5 / The finding that the landings variable has an elasticity greater than one is consistent with the fact that canned salmon accounts for a larger market compared to the noncanned arket. The high price elasticity of the export demand is plawsible, as the canadian canned salmon exporters are competing with other suppliers from Japan and the U.S. in the international market. Given the empirical results, we can predict that an increase in the landings of salmon wlll increase the market value of the increased production th canned salmon at the wholesale level. Because the derived demand for the salmon at the ex-vessel level is not estimated here, it is impossible to measure the direct retationship between landings and fishemen's revenues. However, if the fishermen's revenues are assumed to be proportional to the wholesale values, it seems reasonable to conclude that fishermen as a whole are likely to increase their revendes from the salmon enhancement
program. gram

An Econometric Analysis of the Parifir Snlmon an tortit. Aine ica

Both landings of salmon and the supply of canned salmon are assumed to be perfectly price inelastic in the previous model. This assumption has been made by all the previons empirical studies in this resear area. The treatment of landings as en exegenoum watisble ariser fremprical sturies in this research (empirically) that the present ex-ytssel price can affect the wermit ledificulties in justifying
 impacts on the stock and catch of salmon. fo wout metietes by therk mand metart can exert significant

The difficulties of specifying a supply function for salmon at the ex-vessel narket are not cuercone nere. Nevertheless, an attempt is flade to shed light on the process of allocating raw salmon into different prodict forms (canned and noncanned) by employing the verlove expectatior mocels.

In the previous model dad the present nodel total demand for salmon at the wholesale level is partitioned into domestic and export demand to renove a possible simultaneous equations bias. The present model differs from the previous studies in the level of aggregation. First, all five sammen species (chinook, coho, chun, pink, and sockeye) are aggregated. This is a necessary procedure, since the U.S. export data are avaitable on a species thasis for only a very short perioc of tirie. In addition, the high correlation among the ex-vessel prices of different species of satmon will certainly create aluiticollinearity problems if denard functions are specified for each species with prices of all five soecies being included in the model. Second, Canada and the !!. S. are combined into ome regior (forth America, ane all importing courtries of Pacific saimen from North America are grouped irto tre rest of the world (ROW) region. This type of aggregation has been suggested ir the studies of internatioral arade in agricultural commodities (e.g., Fletcher, Just, and Schmitz, 1977). the tigh correlation (0.9557) between the Ganadian and the ل.S. average ex-vessel prices suggests that samon tarkets in these two countries are highly interdependent and fence suppurts this aggregation procedure.

Model specification
Canned and round and dressed salmon (frestind frozen) are the major products processed from landings. The production of each salmon product depends on several factors, inciuding the wholesale price, processing and marketing costs, and the ex-vesset price. These factors need to be predicted by processors or negotiated between processors and fishermen so that the desired production can be planmed by processors before the opening of the salmon season.

Processing and marketing costs are assumed to be constant in order to simplify the anialysis. The volume of landings is the major determinant of the ex-vessel price, when demand shifters remain constant. The present level of landings is thus used to represent the ex-vessel price. Since canned and noncanned salmon products are competing for supply in the ex-vessel market, wholesale prices or both products are included in each supply function. Based upon the above arguments, the desired production of canned salmon is hypothesized to be:

$$
\begin{equation*}
C Q^{\star}=a_{0}+a_{1} C W P^{*}+a_{2} F W P^{\star}+a_{3} N L+u_{1} \tag{1}
\end{equation*}
$$

where an asterisk indicates the desired or expected level of variables; $C Q$ is the production of canned salmon; CWP and FWP are wholesale prices of canned and moncanned salmon, respectively; NL denotes the landings of Pacific salmon from North America; u_{1} is an independent, mormally distributed randomerror term with a zero mean and constant variance.

Assume that production camnot change immediately in response to new economic conditions so as to reach the level planned for the same period. The following quantity adjustment is introduced,

$$
\begin{equation*}
C Q-C Q_{-I}=k\left(C Q^{\star}-C Q_{-1}\right) \tag{2}
\end{equation*}
$$

where -1 indicates a one year lag for all variables; k is the coefficient of adjustment speed and $0<k<1$.
Combining equations (1) and (2) leads to an equation in which the supply variable is represented in terms of its actual quantity.

$$
\begin{equation*}
C Q=k a_{0}+k a_{1}\left[W P^{*}+k a_{2} F H P^{*}+(1-k) C Q_{-1}+k a_{3} N L+u_{1}\right. \tag{3}
\end{equation*}
$$

The price variables are now the only variables left in the expectation forti. Nertave (1961) indicates that they can be removed by making certain assumptions regarding the manner in which processors form their price expectations. The simplest case is that of the naive expectations, where the current expected price is assumed to be equal to the previous actual price, i.e.,

$$
\begin{equation*}
C W P^{*}=C W P_{-I} \text { and } F W P^{*}=F W P_{-1} \tag{4}
\end{equation*}
$$

Substituting equation (4) into equation (3) leads to the supply function being determined by the variables in actual values, i.e.,

$$
\begin{equation*}
C O=b_{5}+b_{2} C M P_{-1}+b_{2} F W P_{-1}+b_{2} C_{-1}+b_{4}{ }^{\text {ML }}+u_{1} \tag{5}
\end{equation*}
$$

where $b_{0}=k a_{0}, b_{1}=k a_{1}, b_{2}=k a_{2}, b_{3}=l-k_{1}$ and $b_{4}=k a_{3}$. The expected signs for the coefficients are $b_{1}>0, b_{2}<0, b_{3}>0$, and $b_{4}>0$. If the coefficient of the adjustment speed (k) is close to one b_{3} will be close to zero. Similarly, the supply of noncanned salmon can be hypothesized to be:

$$
\begin{equation*}
F Q=c_{0}+c_{1} F W P_{-1}+c_{2} C W P_{-1}+c_{3} F Q_{-1}+c_{4} \mathrm{HL}+u_{2} \tag{6}
\end{equation*}
$$

It should be noted that equations (5) and (6) can be derived from different assumptions of quantity and price adjustment processes. ${ }^{6 /}$ the major discrepancy, due to the use of cifferent assumptions to derive the same specification of the supply relationships, lies in the complexity of the eror terns. Consequently, different estimators are employed.

The specification of the domestic demand and export demand for canned and roncannec salmurl follows the previous model and can the expressed by equations (7), (8), (9), and (10), respectively.

$$
\begin{align*}
& \operatorname{COQ}=d_{0}+d_{1} \operatorname{CWP}+d_{2} Y+d_{3} T P+d_{4} \operatorname{CSP}+u_{3} \tag{7}\\
& \operatorname{CXQ}=g_{0}+e_{1} \operatorname{CWP}{ }^{\prime}+e_{2} E R+e_{3} Y^{\prime}+e_{4} J L+u_{4} \tag{8}\\
& \operatorname{FCQ}=f_{0}+\epsilon_{1} F W P+f_{2} Y+f_{3} F S P+u_{5} \tag{9}\\
& \operatorname{FXO}=g_{0}+g_{1} F^{\prime} \text { FP' }^{\prime}+g_{2} E R+g_{3} Y^{\prime}+g_{4} A L+g_{5} J L+u_{5} \tag{10}
\end{align*}
$$

where CDQ, CXQ, FDQ, and FXQ ame the domestic and export demard for pacific canned and nomanned salmon, respectively: CWP, CWP', FWP, and FAP' are the real wholesale prices of cannes and noncomed sulmon in U.S. dollars and foreign currency, respectively; Y and Y are the real income levels for the North America region and the major importers of the dacific salmon, respectively; CSP and FSP are tre real prices of substitute or conolementary goods with canned and noncanned saimon in North Aremica, respectivelyt JL and AL are landings of salmon in Japan and of Atlantic salmon, respectively; $E R$ is the exchange rate variable; u_{i} is the error term.
The model consists of six behavioral equations (5) - (10). To close the above rode', four identity equations are needed. As specified in equations (11) and (12), supply of each salmon product cauals the sum of domestic demand and export demand. Equations (13) and (14) are price identity equatior.s.
(11)
(12)
(13)
(14)

$$
\begin{aligned}
& C Q=C D Q+C X D, \\
& F Q=F D Q+F X Q, \\
& C W P{ }^{*} E R=C W P^{\prime}, \\
& F W P P^{\prime} E R=F W P^{\prime} .
\end{aligned}
$$

Estimation procedures and data sources.
To facilftate the discussion of estimation procedures and data sources, the model is restated here with the a priori expected signs of the coefficients included.

1. Supply functions:
(11.2)

$$
\begin{align*}
& C Q=f\left(+C W P_{-1},-F W P_{-1},+C Q_{-1},+N L\right) \tag{II.1}\\
& F Q=g\left(+F W P_{-1},-C W P_{-1},+F Q_{-1},+N L\right)
\end{align*}
$$

2. Donestic Demand Functions:
(II.3)
$\operatorname{CDO}=\mathrm{h}(-\mathrm{CHP},+\mathrm{Y},+\mathrm{TP}$, ?CSP $)$
(II.4)
$F D Q=1(-F W P,+Y, ? F S P)$
3. Export Demand Functions:
(11.5)
$C X Q=j\left(-\right.$ CWP' $\left.*-E R,+Y^{\prime},-J L\right)$
(11.6)
$F X Q=k\left(-F W P^{\prime},-E R,+Y^{\prime},-J L\right.$, ZAL $\left.^{\prime}\right)$
4. Identity Equations:
(11.7)
$C Q=C O Q+C X Q$
(:3.3)
Fy $=$ FIGP + FRG
(11.9)

CWP*ER = CWP'
FWP*ER $=$ FUP ${ }^{\prime}$
(11.10)

Estimation procedures, The above model actually consists of two subwodels, one for canned salmon and the other for noticanined salmon, within each submadel; stpply is detarwined first and then feeds into the
(quantity) identity equation in the system of simultaneous equations which contains two demand equations (donestic and export denand) and two identity equations. Therefore, it is a recursive submodel.

Because the error term in each supply equation may or maj not be serially correlated by assumption, different estimators are employed. In the case when the error terim is not correlated, the presence of a lag ged endogerous wariable (CQ_{-1} or FQ_{-1}) among the explanatory variables neans that the error terri is no longer uncorfeldted with ali the explanatory variables (domston, 1972). As a consequence, the ordinary least-squares (0LSO) estimator will produce biased estimates in small smples. It has, however been proved that the OL\$0 estinator has the smallest mean squared error when compared to two other al ternative estimators (Copes, 1966). For this reason, the 0ts? still seens the best estimator, provided that the error ter:it is rardori.
While the error tern in each supply equation may be serially uncorrelated, the error tems may te correlated acress the two supply equations. This is because the landings 0^{*} salmon are processed into either canned and noncanred salmpr. Thercfore, the two supply equations are estimated sy the seemingly unrelated regression (SUR) technique.
As explaimed above, different expectations models will lead to the same specification of eouations (lla) and (1.2) with complicated error terms. Facing this issue, two adational estimators are employed. They are a generalized least-squares method with the Cocnrane-l)rcutt procedure (Labys, 1972) and an instrumental variable approach $\{$ Johnston, 1972).

Two systems of simultaneous equations for the denand sector are specified in this model. Due to the nature of the quantity identity equation, the behavioral equations can not assume the multiplicative functional form, if the reduced-forn equations are to be derived with unique cofficients. They are assumed to be linear. These two simultancous equations systems are combined and estimated by three-stage least squares (3SLS) to take into account the possible correlation between the error terms across systems.
Data sources and problems. Data used in this study are annual, covering the period from 1952 to 1980. Data sources are surmarized in Table 2 (page 4).

The major data protiem lies in lack of the production data for noncanned salmon in the U.S. The production of camned satmon is converted into live weight and then subtracted from the landings figure to derive the U.S. production of noncanned salmon. To produce a 48 -pound (standard) case of canned salmon, depends on the species of fish being canned, as follows: chjnook, 68 lbs.; coho and chum, 72 tbs.; sockeye, 701 bs : and pink, 7 B 1bs. (Johnston and Wood, 1973). Apparently, there are difficulties in using these conversion rates throughout the period 1952 to 1980 , but it is the most convenient way of estimating the U.S. production of noncanned salmon.
Since the data on production of noncanned salmon in the $U . S$. are not available, it is aifficult to calculate the wholesale price of noncanned salmon in the U.S. For this reason, the Canadian wholesale prices of canned and noncanned (round and dressed) salmon are converted into the U.S. dollar and used as endogenous price variables.
Because the whole world is partitioned into two regions (worth America and ROW), a further explanation of the calculation of some variables (income and exchange rate) is in order. The ROH income variable (y') is calculated by the following formula:

$$
y^{\prime}=\sum_{i=1}^{n}\left(y_{i t} / Y_{i o}\right)^{\star w_{i t}}
$$

where n is the number of major importing countries of Pacific salmon; $Y_{i t}$ and $Y_{i 0}$ are the i th country's incone levels ir years t and 1952, respectively; $H_{i t}$ is the ith country's share of the ROW's imports in year t. All income figures should be deflated by appropriate price indices (such as the wholesale price index of each country). Exchange rate variables are calculated similarly. That is,

$$
E R=\sum_{i=1}^{n}\left(E R_{i t} / E R_{i o}\right) *_{i t^{\prime}}
$$

 and 1952, respectively.

Empirical results.
Three estimators are employed to estimate the supply equations. They are (1) semingly unrelated regression (SUR), (2) generalized least-squares with the Cochrane-Orcutt procedure (GLS) and (3) the instrunental variable procedure (IV). SUR and GLS produce similar results but SUR performs better in
terms of thean squared error. The IV procedure does not provide expected results. fherefore, only the SUR results are reported here, with t statistics in parentheses.

The high R-squared statistics indicate a good goodness-of-fit for both equations. All the estimated coefficients have sions consistent with a priori theoretical expectations. The estifated coefficients of the price variables (FWP -1 and CWP -1) in the noncanned salmon supply equation are bigger tran those in
the canned satmon supply equation. This result reflects the fact that it takes more raw saliron to produce canned salmon than noncanned salmon. The landings variabie (NL) has a bigger coefficient in the canned salmon equation than that in the noncanned equation. This points out that the camed market is
 and statistically insignificant, reflecting a bigh speed of adjustment in both sectors.

The two simultaneous equations models are estimated as a single syster by three-stage least squares (35LS). The results are summarized below, with standard errors in parentheses dnd elasticities in brackets, B $^{\prime}$

Because R-squared statistics are not applicable with 3StS (and 25LS), root-mean-squared percent error (PRMSE) is used to evaluate the overall goodnes5-0f-fit. In terms of the associated PRMSEs and standard errors, the domestic demand for canned salmon equation performs well but the export demand for noncanned salmon equation performs poorly. In general. most of the varlables have signs in accordance with d priori expectations.
In the domestic demand for canned salmon equation, the price variable (CWP) has a negative coefficient and statisticaliy significant at the it level, based on a one-sided asymptotic test. The own-price elasticity, calculated at the mean, is 1.13. The Income variable has an unexpected sign. Similar findings have been reported in the previous studies when the quantity dependent model is specified. It should be noted that canned salmon is found to be a nomal good in canada as indicated in the previous model. Because the income variable may capture the effect of the change in consumer's tastes, it is still an open question if canned salmon is an inferior good in Horth miverica. Camed tuna appears to be a substitute good of canned salmon. The recent glut in the supply of canned tuna in the international market will have a sizable spillover effect on the canned salmon market. The empirical results also indicate that poultry (PPU) is a complementary good with canned salmon and beef (MPU) is found to be a substitute good of canned salmon.

All the estimated coefficients in the export demand for canned salmon equation have expected signs. As Japan's landings increase, the export demand for canned salmon decreases. A surge in the value of the U.S. dollar will, as expected, adversely ffect the export demand for Worth American canned salmon.

Because the exchange rate variable in the export demand for moncanted sainon equation has a unexpected sign and it is statistically insignificint in oth export, demped owembens, the exchange rate variable

$\begin{gathered} \mathrm{CXO}=\begin{array}{c} 60-0.131 \mathrm{CWP}+0.032 \mathrm{Y}^{\prime} \\ (13)(0.095) \\ {[0.37]} \end{array} \quad(0.014) \quad(0.0371) \end{gathered}$
$F O Q=\begin{gathered} 5.5-0.99] \\ (48)(0.76) \\ {[1.13]} \end{gathered} \quad \underset{(0.097)}{ } \quad \begin{gathered} 0.094 \\ (0.494) \end{gathered}$

Judging from the associated standard errors and estinated coefficients, the treatment of exchange rate variables as separate shifters is mot supported in this study. Ir botr experimients the demand for canned almon appears to be more price-elastic than the deqund for nonganed salmon, Tagether with the fact that it takes more raw salmon to produce canmed than morcanmed samon, an increase in the landings of North Arerican Pacific salmon should induce a bigger increase in the production os canmed salmon, when the values of other predetermined variables remain constart. Therefore, it is betifved that the recert glut in the supply of canned salmon will have a great impact on the salmon tishery. As indicated in the eripirical results, Atlantic salmon appears to be a complemertary good with Pacific salmof. fowever, the relationshin betwen Atlantic and Pacific salmon is reversed in a sefarate eygerimert in whici all monetary variables are exoressed in logarithmic terms. A possib?e expanation is that the landings of Atlantic salmon have been relatively low until recent years. The relationshis between these two species of salmon is, therefore, difficult to detect at the present tine

Simmary and Suggestions for Future Research

Because salmon is ore of the most yaluable fishery resources of the pacific coast, resedrch in salmen markets has received considerable attention among fishery econonists in the Pacific horthwest area. Although salmon products are traded heavily in the internationd markets, the international component has rarely been incorporated in the analysis of demand for saluon. As a result, the problems of model misspecification and simultareous equations bias may be present in the previous studies. Therefore, the major objective of this research is to improve our understanding af the salmon markets by considering the internationd component explicitly.
Two international trode models are specified and estimated in this research. The first model emphasizes the Ganadian canned salmon market. The empirical results indicate that the canadian domestic demand for canned is both income elastic and price elastic. The finding of a positive income elasticity contradicts the previous findings in the literature. This rajses an interesting question of whether the unexpected finding of canned sa?mon being an inferior good can be explained by the problems of model misspecification. Therefore, future research in this area is still warranted. The finding of a high price-elasticity is consistent with the previous findings and suggests that an increase in the production of canned salmon will increase its gross wholesale values. For the time being, it is difficult to predict if am increase in salmon landings will increase or decrease the ex-vessel values received by salmon fishermen. In order to examine the effect of incredsed landings on its ex-vessel values, markets of different levels (i.e., ex-vessel, wholesale, international, and retail) need to be nodelled simultaneously. This is, of course, a challenging task for fishery economists to accomplish.

In view of the sutcessful performance of the first model, a more complex model is formulated with two distinct characteristics. First, Camada and the U.S. are aggregated into one region calted North America and the major importing countries of Pacific salmon from North America are grouped and called the rest of the world. Second, the model consists of two submodels, one for canned salmon and the other for noncanned (round and dressed) salmon. Each submodel is recursive and supply is determined first by applying the Nerlove expectation modeis. These two supply functions are estimated by the seemingly unrelated regression technique. After supplies being determined, domestic demand and export demand for both products are estimated as a system by three-stage least squares. The estimation of the two supply functions provides satisfactory results. The previous prices and the present landings are found to be the important factors in the production of the two products. The estimation of the demand for both products as a systert, however, does not provide a good statistical fit, Two possible explanations are suggested here. First, a better model has yet to be specified. Secondly and most importantly, the data base for salmon markets is a rather weak. Fur eanipie, the l.e. mandartion and inventory data on noncanned salman are not available. The Canadian inventory data on canned salmon are confidential and hence not available. One remedy to this data problem is to ase the marketing year (June to June) data, An overview of the data base reveals that the Canadian data are superior ta the U.S. data. Thus, it seens promising that the second model should be refined and applied to the Canadian market.

1. The figure is drawn for the purpose of illustration. It does not necessarily reflect the empiricat
results of the study.
2. This implies that satmon landings are perfectly price-inelastic, an assumption usualty made ir the
demand analysis of fish produ ts demand analys is of fish produsts.
3. Previous studies found that poultry is a complementary good with salmon
4. Because the functional form is multiplicative (log-linear), the incone and the own-price elasticity of domestic demand cam be derived from the estimated export supply equation. Cor example, taking the anti-logarithmic transformation of the fifth equation in Table l, it can be obtained that

$$
\begin{aligned}
C X O & =e^{5.85} \mathrm{PPC}^{0.77}\left(\mathrm{C}^{1.24}(\mathrm{CHP} / \mathrm{WPC})^{2.43} \mathrm{CY}\right. \\
& =\mathrm{A}(\mathrm{CWF} / \mathrm{WPC})^{2.43} \mathrm{CY}^{-1.3}
\end{aligned}
$$

where $A=e^{5.85} P P C^{0.77} L C^{1.24}$
Let CDO and 5 denote the quantity of domestic disappearance and quantity supplied, respectively.
Then $\mathrm{CDQ}=\mathrm{s}-\mathrm{CXQ}$. The income and the own-price eldsticity of domestic demand can be derived as

$$
\begin{aligned}
(\mathrm{OCQ} / \partial C Y)(C Y / C D Q) & =1.30 \mathrm{~A}(\mathrm{CHP} / \mathrm{WPC})^{2.43} \mathrm{CY}^{-2.3}(\mathrm{CY} / \mathrm{CDQ}) \\
& =1.30\left[\mathrm{~A}(\mathrm{CHP} / \mathrm{HPC})^{2.43} \mathrm{CY}^{-1.3}\right] / \mathrm{CDO} \\
& =1.30 \mathrm{CXQ} / \mathrm{CDQ}
\end{aligned}
$$

Similarly, the own-price elasticity of domestic demand can be derived as

$$
[\mathrm{aCDQ} / \partial(\mathrm{CW} / \mathrm{WPC})][(\mathrm{CHP} / \mathrm{WPC} / \mathrm{COQ}]=2.43 \mathrm{CXQ} / \mathrm{CDO}
$$

Therefore, given the estimate of the export supply equation and the ratio of the exports to the domestic disappearance, we can calculate the income and the own-price elasticities of domestic deman. For the period 1952 to 1980 , the average of the ratio of the exports to the domestic disappearance is found to be close to l.0.
5. The definitions of FWP, FQ, NL, FXQ, FSP, CSP, and AL are discussed in Table 2 on page 4.
6. For detailed discussion, see Johnston (pp. 300-20, 1972) and Labys (pp. 39-42, 1973).
7. There are alternative ways of calculating the exchange rate variable. When there is only one dominent importing country in the market the exchanant country's currency there is only one rate variable. In the case of salmon markets there are more than oncy can be used as the exchange Besides the specification adopted here, the principal component orocedumportant importing countries. composite exchange variable. It is not clear which specification is better be used to come up with
8. PPU and MPL are real prices of
previously are

References

Abraham, GIdeon. "Canadian Chum Salmon Export Market Study." M.S. thesis. Oregon State University,
1979.
Canada, Statistics Canada. Annual Statistical Review of Canadian Fisheries. Ottawa: Canadian Statistics, Vol. B-1i. Candian Bureau of

Canada, Agriculture Canada. Handbook of Food Expenditures. Prices, and Consumption. Ottawa: Communication Branch, Agriculture Canda. 1981.

Clark, Jerry and Bruce A. McCar1. "An Investigation of the Relattonship Between Oregon Coho Salmon (Oncorhynchus Kisutch) Hatchery Releases and Adult Production Utilizing taw of the Minfmum
Regression." Conadian J. of Fisherfes and Agudte Sciences 40 (iges):516 Regression." Conadian J. of Fisherfes and Agudtle Scodences $40(1983): 516-23$.
Copes; J.S. Monte Carlo Results for Estimation in a Stable Morkov Tme Series.* J. Royal Stat. Soc.,
Series $\mathrm{A}, 129(1966): 110-16$.
Devoretz. D. "An Econonetric Demand Model for Canadian salmon. Cin, J. of An. Econ, 30(1982):49-59.

Fletcher, S.M., R.E. Just, and A, Schmitz. "The Impact of Excharge Rates and Otrer Factors on North Arerican wheat Export Demand." Working Paper No. 12. Giannini Foundation of Agricultural Econamics. U-C Berkeley, 1977.

Food and Agricultural Organization of the United Nations. Yearbook of Fishery Statistics. Rome. Various issues.
intemational Monetary Fund. Incemational financial statistics. washington, D. C. Yarious issues.
Johnston, 2. Ecomometric Methods. New Yerk: McGraw Hili, 2nd ed. lyji.
Johnston, R.S., and J.H. Wang. :Markets for Ganadian Salnor: An Economie Aralysis of Market Pemand." Canada, Fismeries and Marime Science. Department of Fisheries and Emyironment. ig7t.

Johnston, R.S., and h.R. Woot. "Demand Mnalysis for Carmed Res (Sockeyt at wholesale." Sregon State University, Sea Grant Put. No. CRESJ-T-74-0.01. 36 jages.

Labys, W.C. Dyamic Comodity Model: Specification, Lstimation and simulation. Lexington Dooks. 1973.
May, D.R. "An Econometric Analysis of the British Columbia Salmon Irdustry-" Mester Essay. Universjty of British Columbia, Department of Economics, 1978.

McCarl, B.A, and R.B. Rettig, "[nfluence of Hatchery Smolt Releases and Adult Salmon Production and its Availability." Canadiñ J. of Fisheries and Aquatic Sciences 40(:983):1880-86.

Nosh, D.A. and F.W. Sell. "An Inventory of Demand Equations for Fishery Products." Wiorking paper No. 10. Division of Econ. Res., Bureau of Comm. Fish., 1959.

Herlove, M. "Time-Series Analysis of Agricultural Products." ln E.O. Heady et al., editors, Agricultural Supply Foundations. Ames: Jowa State Jniversity press, 1961.

Onuorah, M.C. "Foreign and Domestic Trade in Canned Salmon of the U.S. and Canada: the Effect on the Derived Demand of the Fishermen." M.S. thesis. Oregon State University, 1973.

Swartz, A.N. "The Pacific Coho Salmon Fishery: an lntrasensonal and Interregional Economic Andysis of the Ex-vessel Market." Ph.D. thesis. Oregon State University. 1979.

United Nation. Monthy Bulletin of Statistics. New York. Various issues.
U.S. Department of Agriculture. "U.S. Food Consumption: Sources of Data and Trends, 1909-63. ' ERS. Stat. Eull. Mo. 364, 1965.
. "U.S. Food Consumption, Price, and Expenditures, 1960-80." [RS Stat. Bul1. No. 672, 1981 . U.S.Department of Connmerce; Bureau of Census. U.S. Inports for Consumption. Warious issues. U.S. Exports for Comsumption. Various issues.
\qquad . National Marine Fisheries Service. Fishery Statistics of the United States. Washington, D.L. Warious issues.

- Fisheries of the United states. Washington, D.C. Warious issues.

Wang, D.H. "An Econometric Study of the Canadian Sockege Salmon Market." Ph.D. thesis. Oregon State University, 1976.

Waugh, F.H. and V.J. Norton. "Some Analyses of Fish Prices." Working paper No. 32. ERS. U.S. Bureau of Comin. Fish., 1967.

Wood, W.R. "A Demand Analysis of Processed Sulmon from the West Coast." Ph.D. thesis. Oregon State University, 1970.

Multinational Arrangements

Export Marketing Strategies for Fish and Fisheries Products: Lessons From International Tuna Joint Ventures in the Southwest Pacific

Karl C. Samples
Department of Agricultural and Resource Economics University of Hawaii USA

Introduction
Proliferation of exclusive fishing zones around the world has altered the flow and direction of international trade in seafood products. Trade flows have diminished in a number of instances. Reductions in United States (U.S.) demand for frozen groundfish imports is an example where increased resource endownent, combined with changes in relative prices, have reduced import incentives (Copes, 1980). Instances can also be found where fish, once transported to distant markets in the holds of foreign factory ships, are now consumed in the coastal colintry of origin.
For many coastal nations, however, ocean enclosure has triggered greater interest and activity in export marketing. An export orientation is sometimes induced by an excess supply situation in local markets for a fish product that is consumed in copious quantities abroad. Such is the case, for example, with squid in the U.S. and tund in the southwest Pacific. Alternatively, requisite processing facilities may not be situated locally. Unprocessed fish or shellfish, such as trawl-caught pollack in the U.S., must be exported to foreign processors if they are to be sold at all. Existence of international price differentials, especially for luxury or specialty products, further encourages exportation. Added to economic comparative advantage incentives are the poititical goals of increased net foreign exchange earnings, export tax revenue creation and export-led economic growth (Johmson, 1973; Keesing, 1967).
As a result of strong export incentives, international seafood trade has on balance registered a net ncrease since the widespread appearance of fishery conservation zones during the mid to late 1970 s . According to United Nations statistics, world exports of fish and fisheries products grew in terms of volume at an average annual rate of 4 percent over the years 1977 to 1981 (see fable 1). The nominal value of exports grew at 12 percent annualiy over the same period. More recently, however, this strong upward trend has reversed somewhat (Infofish, 1984).
Despite general trade expansion, efforts to sell seafood products abroad have repeatedly been hampered by export marketing inexperience, under-financing, processing constraints, and product distribution bottlenecks. Delivering a suitable product to foreign customers at the right time, in the correct order quantity, and at a competitive price can be a formidable task, especially for the uninitiated. At a minimum, a well-conceived export marketing plan is called for,
This paper addresses strategies for selling seafoed products in foreign markets. The primary objective is to describe the role that international joint venture arrangements can play in facilitating this process. No attempt is made to differentiate the marketing role of joint ventures in industriaitized, 5 emi-industrial and non-industrial coastal nations. Space does not permit giving adequas attention to this subject even though joint venture narketing opportunities and activities are obviously distinction the condition of a country's infrastructure and marketing resources. Furthermore, no clear distinction

The gaper begins with an overview of some basic export marketing considerations. The dual purpose of this section is to point out how joint venture arrangements fit into an overall export sarketing strategy, and to introduce some marketing terminology used throughout the paper. Readers already familiar with marketing management concepts may wish to direct their attention to the second section. Here the focus turns specifically on international joint venture arrangements. Three international joint ventures located in the southwest Pacific are analyzed in terms of their organization and scope of export marketing activities. Based on these case studies, lessons are drawn about the export marketing strengths and shortcomings of jofft venture arrangenents.

With target markets identified, decisions abolit product form and yolume, pricing, distribution and pronotion can provisionally be made. These constitute the mix of controllable narketing variables Product form and votume determine processing and handing requirenents. Price is usually subject to manipulation. Pricing affects total sales, profits and level of competition from new market entrants. Distribution and promotion decisions influence the type uf customers served, total sales valume and marketing costs. Choice of a distribution system also has relevance for maketing management control and business risk (Rosenbloom, 1978).

Decisions on marketing mix have direct mplications for what marketing services an exporter will be required to perform. For example, a decision to sell smoked cod direct to retaiters in northern Edrope means export marketing chanel members must fulfill significant processing, storage, transjortation and selling functions. Consigning raw cod to a foreign processor entails far less marketirg responsibilities Regardless of which specific services are verfomed, they must be provided at infinimm possible cost if export markets are contestable. Firms with large volumes and wide export product lines redue competitive cost advantages in this regard. Fur exdmple, it is known that fixed costs associated witrimairitairing foreign sales outposts, conducting market research, and providing product transportatior and stordge services can be averaged ower increased sales wolume. In addition to economies os scale, fixec costs of export marketing can also be averaged over multiple product lines. Efficiencies realized by multiple product firms, or "economies of scope", have beer modeted elsawhere by Panzar and willig (!981) and also described by Eailey and Friedlaender (19B2).

Goal definition and target market analysis ?eaves open the question of who will carry out the marketing plan. What is meeded are participants with the technical know-how, marketing information sources, financial wherewithall, and business ambition to overcome export obstactes. sroadly spoakirg, thrce alternatives present themselves. First, locally owned and operated firms can assume full export. responsibilities or work in cooperation with foreign middemen. Alternatively, foreigners can wholly accomplish all exporting tasks. Thirdly, foreign and donestic firtis cam harmoniously link together in joint ventures to achieve commonly held marketing objectives.

Quite likely if public decision makers are concerned about seafood export expansion, comestic firms are either unwilling to engage in the activity, or are incapable. Perhaps increased interest could be sparked through a expart training program, or a export market information dissemination program. Export subsidies in the forms of export tariff reductions, export ioan programs, income tax concessioris, infrastructure dewelopment projects and granting sole distributorship rights are routinely used to encourage additional exports by domestic firms.

Foreign firms may be in a better competitive position to supply needed export marketing resources. Foreign involwement can teke the form of "fee fishing arrangements. This effectively places ait marketing responsibilities (and therefore marketing profits) in the hands of distant-water fishirs organizations. Fee fishing arrangements are convenient in terms of low initial contracting costs and rapid startup. They are relatively risk free from the point of wiew of island communties because limited demands are placed on locally supplied investment resources. Their effectiveness in accomplishing host nation ${ }^{\text {s }}$ s long-term fisheries development objectives has been called into question (Kent, 1980; Aprieto, 1981; Martin et al., 1981). Other forms of oirect foreign investment in ses food exporting activities have been documented for the $U . S$. (Sulliwan and Huggellund, ig7g) and southwest Pacific (Kent, 1980; Ridings, 1983). Based on these studies, the contribution of foreign-owned subsidiaries tounds achieving a host nation's exports objectives appear to be mixed. Positive contributions include the opening of new markets by overcoming tariff and non-tariff barriers; introduction of improved processing, handing and transportation technology; and the injection of additional financial resources. On the negative side are factors such as retarded development of donestic marketing capabilities, increased demands on locally generated investment capital, transfer pricing and tax avoldance, dnd monopsonistic raw material procurement behavior, Gains and losses such as these seem to be characteristic of direct foreign investment impacts in general (see for example chudsom (1975) and Parry (1980)). In balance the socida and economic impacts of direct foreign investment in fish export marketing activities are not well understood and deserves further study.

A third export avenue is to collaborate with forefgn partners in joint export marketing ventures. joint venture concept is a vague and broad one. There is no agreement on a general definition. Hevertheless, a consensus exists that a joint venture constitutes a formalized collaborative effort by any number of contributing nembers in a mutually beneficial, risk-sharing business partnership (Martin, et ati; 1981. Raczynski and LeVieli. 1980; Hamlisch, 1974; Friedman and Kalmanoff, 1981). Such
 their business objectives. By approaching a project jofntly, a synergistic combination of inputs takes place. The result is the production of commonly desired outputs at reduced total cost.

Prapid expanston of joint venture activity has been observed by Raczynski (1981), Kaczynski and LeVieit (1980) and Ciutchffeld et al. (1975), among others. Auportediy at least a doubling of the number of
 joint ventures are globally distributed. They ate fuphed wtit marwerting. processing, storage.

Table 1. Growth in World Exports of Fish and Fisheries Products

Source: United Nations Food and Agriculture Organization (FAO), 1979 Yearbook of Fisheries Statistics, vol. (49); FA0 1983 Yearbook of Fisheries Statistics. Vol. (53).

Notes:

(a) Quantity $=$ thousands of metric tons
(b) Yalue $=$ thousands of \$105.

Strategic Considerations in Export Marketing

Export marketing decision making begins with the identification of concrete export marketing objectives. Objectives serve as important benchmarks to measure the performance of a particular export endeavor. Goals usually differ between publ ic and private planning agents. Government may seek to increase fishermen's wages or employment opportunities, earn foreign exchange, develop infrastructure, and so a private firm generally has less altruistic goals. It may seek to diversify risk, stimulate forth. A private firm generally has less to total sales volume. Although strategic planning to achieve profits, increase marketing share, or add to cognition has to be given to the fact that if exporting is to public goals is emphasized in this paper, recognition has be undertaken by the private sector, private business objectives must (kotler, 1004)
Aside from goal formulation, the export marketing environment needs appraisal (kotier, 1984) tential Understanding the economic, political-legal and cultural environment of the exporariables. Important importing countries is thelpful in selecting trading partners and marment and forecasted demand for considerations include: fish raw material supply availability; current and exporting nations; existence exportable products in potential markets; degree of compee tion markets; and domestic and foreign of tariff and non-tarif monetary regulations.
Given a set of goals and marketing enviroment constraints, a ranking of potential export markets can accur Although sales could conceivably be made worldwide, selecting one or a few export markets to occur. Although sales could conceivably be wisk management and market coverage purposes (Ayal and Zif, 1979). Target markets usually are defined in terms of geographic and demographic dimensions. For example, a target market for canned tuna is middle-fncome urbanites in Canada and the United Kingdom. cultural or political ties sonetifes identify target markets. On other occasions, target markets are those where the bulk of consumption occurs (U.S. and Japan for tuna, for example).

Acquiring aceess to marketing skills of experienced transnational copporitions is an incentive cactor for host nations contemplating joint venture finvolvement. As walmsley (1982) puts it, a joint venture is "a deliberate alliance of resources of two independent organizations in order to mutually inprove their market growth potential (p. 4)." This yiew of joint ventures as exporting marketing institutions is commonly shared. For example, in arguing for increased Canadian involvement in jeint ventures, Tominson and Brown (1979) state that joint ventures "provide virtually gudrantepd access te tlarkets .- and with costs which permit competitive price levels (p . 258)." Similarly, mention is made of the fact that joint ventures in the U.S. have created opportunities to harvest pollack, squid and ocher underutilized species where domestic markets are weak and/or domestic processing costs are excessively hag (kaczynski, 1979). Kaczynski (1984) argues further that the primary advantage of contractual "over-the-side" joint ventures in the U.S. is the export marketing services obtained from foreign partners. The existence of export market potential is an incentive to both parties. Crutchfield et al. (1975) zoint out tat establishment of joint ventures is facilitated when a common shared goal of all participants is to exploit prumising export markets.

Tuna Joint Ventures in the Southwest Pacific

Ridings (1983) identified sewenteen tund joint ventures active in the southwest Pacific. Dut of this group, only eight are "international" joint ventures in the sense that participants are cf different nationalities. The other nine are locally registered companies, wholly owned by foreign interests. Included in this latter group, for example, are the two canneries in American samod which are owned entirely by Van Camp and Starkist. Of the eight international joint ventures, all involved equity participation by Japanese firms. Local governments were active participants in half of the ventures. Case studies presented below concern joint venture operations in Fiji, the Solomon Islands and vanuatu. Information on the operating characteristics of the ventures came from different sources, depending on the host country. Huch of the detailed information about the Fiji joint venture came from personal interviews with venture participants and from public records. News articles and other secondary data sources provided information about the ventures in the Solomen Islands and Vanuatu.

Case I: The Pacific fishing Company, Ltd., Fiji. Fiji's experience with joint ventures began in 1963 With the licensing of a fish freezing and transshipment company. The firm, Pacific Fishing Company, Ltd. (PAFCO), was organized as a joint venture between several dapanese firms and a small group of fiji private investors. Equity ownership was largely subscribed to by three Japanese trarsnational firms. The major shareholder, C. Itoh and Co., litd. (Itohchu Shaji), owned 33.3 percent of the newly formed PAFCO. Nichiro Fishing Co., Ltd. (Nichiro Gyogyo) and Banto of Osaka both subscribed to 25 percont equity awnership. The remaining $\mathbf{1 5 . 7}$ percent equity ownership was subscribed to locally.

PAFCO operations comenced in 1964 , serving as a freezing and cold storage facility for chartered Japanese, Korean and Taiwanese longlining tuna vessels. The major tuna species unloaded at PAFC0 were albacore, yellowfin and bigeye. Under contract, the catch was sald to PAFCO, frozen or chilled, and then consigned to C. Itoh. Final destinations were markets in the U.S. and Japan. The impact of PAFCO operations on Fifi's export trade in flsh products was phenomenal, In 1963 , Fijijexported $\$ 0 \leq 20,000$ in fish products. Within one year, this volume had increased to $\$ 105214,000$ (Table ?). Between : 964 and 1972, PAFCO exports grew to over WUS 8 million.

In November of 1974, the government of Fiji and C. Itoh and Co.. itd. (hereinafter referred to as C. Itoh) signed a ten year agreement that restructured ownership of PAFCo. The Government became part-owner in recognition of its granting PAFCO sole rights to process and export tuna caught in Fiji waters. The agreement stipulated that PAFCO would build a $60 \mathrm{MT} / \mathrm{day}$ tuna cannery and a fish meal plant according to a phased construction schedule. Since 1974, PAFCO has largely confined its activities to satisfying the following objectives: 1) to process and can tuna fish for local and overseas markets; 2) to purchase and sell raw fish, and 3) to sell supplies and equipment to fishing boats.
By far, the bulk of cannery output (90 percent) is sold as solid pack light meat to export markets in Commonwealth Nattons including United Kingdom, Australia, New Zealand, and Canada. Special trade concessions granted to Fiji in the form of import tariff reductions have favored exportation to these markets as opposed to U.S. markets. PAFCO al so sold approxfnately 6,000 cases of flake tuna in locay markets under its Sunbell label in 1982. A smali fraction of total landings are sold in frozen form (albacore, billfish, and mahimahd) to markets in Tokyo where it is eventually canned for export and for consumption by Japanese households (Kitson and Hostis, 1983). In addition, PAFCO sells dried fins from sharks landed incidentally by chartered vessels.

Gross turnover oy parcu rose dramatically since large scale cannery operations commenced in 1976 . Even with recent depressed tuna market conditions, sales were 730 percent higher in 1982 than during the precannery days of 1974 . Steady sales hikes are largely the result of successful market penetration and product posititoning efforts by C. Itoh staff working for PAFco. In 1980 , PAFco controlled an estimated 9 percent ($2,566 \mathrm{MT}$) of the United Kingdom canned tuna import market. In 1991 , It supplied 16 percent (1,599 MT) of Canadian canned tuna imperts (Kitson and Hostis, 1993).
C. Itoh has assumed almost fully the mangenent, export, domestic markoting and transshipment responsibilitifes of the Pafco operation. This is a result of its erpertist provisions of the pafco agreement and its majority stockholder position. In terws of manguntht, four out of six members of the

Table 2. Fiji's Exports of Fish and Fishery Products. 1958-81,

Year	Fres (MT)	$\begin{aligned} & \text { ozen } \\ & \text { (suss) } \end{aligned}$	Smoked, (MT)	$\begin{gathered} \text { r Salted } \\ (\text { duS }) \end{gathered}$	Other (MT)	served (\$15)
					-	
1958	-(a)	3,000	-		-	
1959	-		-	-		9, C00
1960	-	11,000	-	-		12,000
1951	-	13,500	-	-	a	5,000
1962	-	13,000	-	-		7,000
1963	-	207,000	-	-		5,000
1964	3.700	1,031,000	-	-	-	5.000
1965	3,200	1,955,000	-		-	-
1966	6,200 6,000	2,603,000	-	-	-	- 00
1967 1968	5,500	2,140,000	-	2, 0065	100	55,000
1969	8, 600	3,948,000		20,000	400	324,900
1970	7,900	4,791,000		20.00	100	164,900
1971	8,600	5,791,000		-	-	12,100
1972	10,800	8,280,000	-	3,090	300	285,000
1973	6,800	6,042,000	100	184,000	600	600,000
1974	3,600	1,172,000	1	6,000	395	1,117,000
1975	2,362	$1,622,000$ $1.479,000$	17	53,000	456 2380	1,617,300
1976	2,362 3,104	1,479,000	243	991,000	2,380 4,075	$4,624,200$ $10,424,000$
1977	3,104 4,297	$4,203,000$ $6,285,000$	76	432,000	4,075 5,734	14,124,000
1978	4,297 1,349	$0,285,000$ $1,583,000$	47	337,000 441,000	5,734 3,561	10,741,000
1979 1980	1,349 3,583	7,282,000	57	441,000 441,000	5,440	16,328,000
1980 $1981(b)$	3,583	7,282,000	57	441,000	5,440	16,328,

Source: United Nations, Food and Agriculture organization (FA0), 1963 Yearbook of Fisheries Statistics, 107. 17- FAO 1964 Yearbook of Fisheries Statistics, Yol. 19; FA0 1965 Vearbook of Fisheries Statistics, Vo1. 21; FA0 1969 Yearbook of Fishertes Statistics, Vol. 29 ; FAD 1972 Yearbook of Fisheries Statistics, Wol. 35; FAO 1974 Yearbook of Fisheries statistics, Vol, 39; FAD 197 y yarbook of fook of fisheries Statistics. Vol. 44; FA0 1978 Yearbook of Fisheries Statistics, Vo1. 47; FA0 198I Yearbook of Fisheries statistics, Yot. 53.

Motes:

(a) "-" equals zero, nill or none reported.
(b) Preliminary

PAFCO Board of Directors are C. Itoh employees. Sales management is entrusted to the Managing Director, who resides in Japan and operates out of C. Itoh headquarters in Tokyo. Day to day management of pafco operations is the responsibillty of a handful of C. Itoh employees who are positioned in top and middlelevel management niches. Aside from providing key organizational and personnel management skills relating to raw material procurement and canning production, C. Itoh is largely responsible for marketing management. This includes making all decisions on product mix, production timing, markets to be penetrated and product distribution, gathering.
Performance of these services is facilitated by C. Itoh's massive size and its ability to achieve conomies of scale and scope in product distribution. In 1983, C. Itoh's reported sales were \$us 56.7 billion for a product line that extended from raw fish to microcomputers. The company reportedly maintains 85 branch offices outside of Japan (The Oriental Ecanomist, 1984). This network serves as a market inteltigence gathering and communitation system. Market data is relayed to corporate headquarters, where it is in turn interpreted and disseminated back to trade outposts. Furthermore, the acess to hue financial reserves, both internal and external, that are used to lubricate PAFCO trade flows by credit extension to buyers.
There are several ways that C. Itoh distributes PAFCO products. For private labeicu carmed tyna, it usually acts as a consignee, arranging transportation, insurance and storage. For this service, it receives a 2.5 to 3 percent conmission. often products consigned to C . Itoh are sold to C . Itoh subsidiaries such as C . Itoh of America, Inc. or C . Itoh of vancouver, Ltd. Dccasionally, C . Itoh will purchase canned tuna outright. This occurs when PAFco cannot supply enough volume on its own to meet an order. C. Itoh will then purchase from several producers, including PAFCO, and assemble a large enough order. fiti the order quantity. Frozen albacore, bigeye, black farlin, white marlim, swordfish and pacific tarlin are aften bought directly by C. Itoh and transported to Japan. In Japan, these itens are
either canned in C. Itoh's own cannery, or distributed to other processors. A similar trade occurs in dried sharks fin and skipjack loins.

Case II: Solomon-Taiyo, Ltd. Solomon Islands. The Solomon-Taiyo, Ltat. (STL) joint venture was licensed to operate in 1972 , following fifteen months of tuna stock assessment by Taiyo fishing fo., Ltd. (Taiyo Gyogyo). STL was structured as a joint venture between the government of what was then the aritish Protectorate of the Solamon Islands, and Taiyo Fishing Co., Ltd. (hereimafter referred to as Taiyo). The company was formed witr 5 A $1,000,000$ in authorized share capital, of which raiyo eventually sutscribed to 75 percent. The Goverment was allocated 75 percent in consideration of its granting STL exclusive rights to fish in Solompn Island territorial seas, and to export tuna and tuna products. The durotion of the joint venture agrement was set at 10 years, subject to renewal. In lgol, the contract wis revised to give the Government 50 percent equity, and was extended another 10 yedrs (Meltcoff and LiPurd, i98a).
Under guidelines of the 1972 agreement, STL buitt a 600 MT cold storage facility, ice plant, brine freezer, 600 cases/day cannery and an arabushi plant at Tulugi. iafyoprouided lomg term locans to finance these shore based facilities that were completed in 1973 . Skipjack tuna, harvested by chartered vessels, was the target species for processing and export. In 1976, a second freezing flant and cold storage plant began operations at Noro. Together with the Tulugi station, nearly 18 , ouf MT of skipjack were processed annually by l978. This represented a dramatic increase from the zero catcri levels which existed six years previousty.

Under terms of the 1972 and 1981 agreements, Tajo is granted exclusive rights to export tuna ard tundlike species, in all forms, from the Solomon lslands. The bulk of the fresh and frozen tuna exports shown in Table 3 is shipped to the Van Camp cannery in American Samoa. Canned light nieat tuna is shipped to Great Britain, where STL tuma commanded 7.5 percent of the total canned tuna market in 1980 (kitson and Hostis, 1984), The bulk is sold under private labels. Small amounts are also shipped to dapan where they are presumably reexported to the U.S. and markets in Europe. Dark meat tuna which is not exported is mariketed locally using a separate marketing label. Arabushi, or smoked skipjack tuna loin is marketed exclusively in dapan.

Tabie 3. Solomon Lslands Exports of Fish and Fishery Products, 1971-81.

Source: United Nations Food and Agriculture Organization (FA0). 1974 Yearbook of Fisheries Statistics, Vol. 39: FAO 1977 Yearbook of Fisheries Statistics, Vo1. 44; FAO 1978 Yearbook of fisheries Statistics, Vol. 47; FAO 1981 Yearbook of Fisheries Statistics, Vol. 53.

Hotes:

(4) ".-" equals zero, nill or none reported.

The willingness and bblity of Talyo to sell sil tuna rests in the multinationalis inmense size and fntimate awareness of international flehery tredc. Tatju f faily diversified in all aspects of comercialt fishing, from product haryesting to processing, transportation storage and wholesaling. It handies a wide range of fresh (crab, salmon, tuna, trout, etc, and processed (dried, canned, sfnoked) fish prodicts for hatin constaption and industrial uses. In the 5 fl venture, Taiyo is largely responstble for the sizable gronth in exports discussed previteusiy. As in the case of PAFCD, all inine

exporting agent for STL products. For this basic marketing service, Taiyo receives a sales commission of 5 percent on canned tura and 3 percent on frozen product.
Case III: South Pacific Fishing Co., Yanuatu. The South Pacific Fishing Co. (SPFC) was licensed to operate as a fishing, freezing and transshipment base for a feet of about on wo years later and actuf 1954. Construction of a 1,300 MT freezing plant and $20 \mathrm{MT} / \mathrm{Cl}^{3}$ 1) to buy and sell frozen tura; 2) to supply operations compenced in 1957 . The objectives of SPFC were: foar, and 3 , to inspect and repair fishing chartered fishing boats with fuel, 01\%, food, and fishing gear, in leaney and lee ing7: and wil son buats. A detalied discussion of SFFC early operations is found in leaney anole ins and (1966).

Included were twa lapanese

The company wis strucuured as a joint venture beiween four companies, susan daisha, a U.S. firm (Washington companies, Mitsui and Co., Ltd. (Mitsui Bussari Kaisha) and id he. (nereinufer referred to as Mitsui) Fish and Oyster Companyl, and a local firm. Mitsul and concer (home 1981, the government. of Vanuatu was Was, and contimes to be, the fiajority stockholder. for for unspecified export tariff reductiors. granted 10 percent ownershio of the conpany in return for unspecified enport farif reduct
Fishing and freezing activities expanded briskly. Within one year, Yanuatu (formally New hebrides) had a million dollar export trade in fishery products. By 1968 , exports of frozen yellowfin and albacore tuna a high during the tura longline heydays of the early ighs. During this time, the Hew Hebrides government was earning an estimated sus 400,600 annually in tuna
 export tariffs, a significant pab of the bubports have historically been sold to buyers in the U.S. Wilson an extended boycott. Washington Fish and Oyster Company (the U.S. partner) was a regular buyer of frozen 1966) reportea that it is uncert ing is Mitsui's uncertain which in puerto Rico. Second quality tuna, along with dried sharksfin, is marketed by Mitsui in Japan.

Table 4. Vanuatu's Exports of Fish and Fishery Products, 1958-81.

Source: Government of Yanuatu, office of National Fiannirs and Statistics. Vanuatu Statistical Bulletin, 1982.

Notes:

Mitsui and C. Itoh play similar export marketimg management rotes. Mitsui is a larger trading company than C. Itoh. In 1983, Mitsui reported annud sales of $\$ 0 \leq 64.3$ bition and had 150 branch offices outside of Japan (The Oriental Economist, 1984). An estimated forty Nitsui employees reside in Vatuatu. provide technical guid their responsibility is to schedule tuna purchases and sales, monitor prices, and produce a frozen tuna product Miting technology and product quality. Af though SPFC is geared to early 1960 s , a small tuna smoking plat was built and 67 MT ented with fish smoking and drying. In the (Witson, 1966). This operation probably would have continued but the froduct was exported to lapan Mitsui has also recently been investigating the feasibility frozen bef that is produced locally.

Lessons Learned About Joint Venture Export Marketing

One yardstick for evaluating a joint venture's export marketing performance is how well the venture between localities, it fisheries development objectives. while professed development objectives between localities, it generally appears that southwest Pacific Island nations seek to: export earnings from tuma sales: 2) increase the value-added to localfy nations seek to: 1) incraase technical and business skitls from foreign partners. Aased ond assimilate of individual joint ventures is mixed, depending on formal on these evaluation criteria, the performance some general lessons can be learned. Nephing on formal structures and participants. Nevertheless,

Lesson 11: foreign partners can contribute key export marketing management inputs. Firms such as taiyo equipped with financing many years of export marketing experience to host countries. They also come previous experiences with fish processing distribution systems, and political allies. Since all have activities ranging from collection and freezinstribution, they have the capabilities to undertake Japanese buyers, to the operation of smoking (arabish (in the round) for transshipment to U.S. or the cases of freezing and transshipment ventures (arabushi and katsuobushi) plants and tuna canneries. In and maintenance of freering equipment; 2) determining fish firms assume responsibifity fur: 1) purchases contracting for export sales.
esson joint vanture
Lesson. 2: joint ventures can export large quantities of fish and fisheries products. There is probably cases discussed above, formalized agreements augmented pacific Island gross export earnings. In all the decades have created entire export industries from nothing transnationals over the past two to three higher tund export values: additional tund thoughout and. Two factors have generally contributed to landed. Whether canned or not, increased physical tuna throughout average value-added per ton of tand responsibility. Either new export and domestic markets throughput entails additional marketing U.S. canneries in American Samoa must be further menetratst be developed, or existing markets such as tuna by-products, jolnt ventures have tended to penetrated. Aside from simply selling more tuna and sophisticated local processing is a key factor.
To what entent are Japanese transnational cor
exports, and tncreased average walue per corporations responsible for higher gross walue of tuna responsible by reason of the fact that it metric ton of tuna landed? For fiji, C. Itoh is largely decision-making. A similar situation reportadiy exists complete control of marketing management LPPuma, 1983). Historlcally. it has been t. Itoh's and Taiyo's solomon-Taiyo joint venture (Meltzoff and how nuch conned and frozen tund to produce, and where to distribesponsibility to select what type and Japan, they have opened highly concentrated Japanese smoked atribute the product. Through affiliates in imports. With their business connections in Europe, they have frozen tuna markets to Pacific island obtain preferental trade access to EEC member countries have assisted Fiji and the Solomon Islands also managed to produce canned products of consistent stringent import requirements of large wholesale food distributors in sufficient quantity to satisfy
Although the PAFCO, STL and SPFC joint venturet have
their activities have increased net foreign exchange ncreased export earnings, it is uncertain whether are import-intensive. Almost all inputs with thege earnings. Canning, freezing, and smoking operations ram tuna are imported. Imports include metal for cans, packing factory labor, maintenance services, and ad infintium.
company profits is proprietary, avantible evindence surg potential wak points. Although information on PAFCO ventures are very nodest, perhaps zero. Meltzoff and that average dinnud profits for the STL and has not, homever. naptart ? preft: wuing its ffrst decade, fincurring fi33) report that "The joint company volume, parco profits have also been ion of sus 4 millifon; (p. 55). Despite setback in 1978 which participated in Pafco have dividends been declany two of the nife years that theressive gains in sales profits during start-up years are to been declared. Profitability of the that the Fiji government has prices for spare parts, machinery to be expected. it is suspected that the SPFC is unknown. While low concern that Talyo is not striving to expendable supplies purchased fres may be paying excessively high (Meltzoff and LiPuma 1993). To control fin top market prices for tund Taive. Furthermore, there is an in-house marketing divisfon to monitor Tatyo's pristang fity the that tit receives on consignment

Interpretation of the actual profit picture is confused, however, by the fact that participarits rodinely extract income from company activities in more direct ways. daponese partiters typicaly receive management fees, sales commissions, technical assistance fees, and loan interest payments. Goverriert partners extract import and export duties. They a so collect taxes an locally generated incone. since these charges are accounted for as costs of doing business, reported profits tend to be low even thoug' partners are earning positive financial returns.

Consistent lack of attention paid to training local marketing managers is also a lesson to be learned, at ieast from the PAFCO and STL ventures. Training practices of the SPFC are uncertain. As noted in the case study of Fiji, dapanese expatriates occupy all senior level management posts. A similar situation prevails in the Solomon Islands where Japanese managers from Taiyo occupy all upper and middle-managenert positions. Since marketing decision making in these ventures is conducted entirely by employees of dapanese parent firms, there is little expectation that, in the short term, island nations can assune significant marketing responsibilities.

Lesson \#4: control of joint venture marketing activity is a complex matter. As more marketing tasks are undertaken by foreign firms, a host nation's ability to control the marketing process and monitor sales performance diminishes. At least this has been the experience in Fiji and the Solomon Islands. Two reasons for this can be given. First, because the supply of firms capable of processing and selling large quantities of tuna is limited, suitable partners are in a position of strength to negotiate agreements that provide near full marketing autonomy. Secondly, the cost of monitoring day-to-day activities of joint venture partners can be high, and suitably trained local personnel may not be available. Through a combination of these factors, the problem arises of finding a balance between maintaining contro? over market management on the one hand, and utilizing the services of independent expatriate marketing experts to increase tuna harvesting rents, on the other.

Costs of achieving more marketing management control can be high. Marketing control can be "bought" in several ways including: 1) purchase of controlling equity interest in the venture; 2) negotiating contract terms which stipulate that local managers receive full training in marketing management, and employ these individuals as "watchdogs"; 3) conducting routine management audits to measure marketing performance of transnational corporations (done with the aid of paid consultants); and 4) terminating the joint venture agreement and contracting instead for specific marketing services to be performed on a competitive bid basis.

Conclusions

Export marketing of tuna products in the southwest Pacific has been facilitated by joint venture establishment. Based on experiences of Fiji, the Solomon Islands and Vanuatu, it appears that joint ventures can be flexible in terms of the size and scope of marketing activities undertaken. Japanese partners in these ventures have the requisite marketing skills to infiltrate new markets, and further penetrate existing tuna markets. Although export sales have growin significantly, Japanese management has not generally stimulated strong profit performance. Nor have the Japanese devoted serious attention to developing the marketing skills of local managers. Whether this is a peculiarity of dapanese partners, or all foreign joint venture partners, is not known.

Low profits and lack of attention to managerial training are two reasons why joint ventures are often viewed as stop-gap measures, to be abandoned when local skills are somehow sufficiently developed to permit complete local management. Political incentives to adopt this outlook may be great, especially in the Pacific where tuna is an economically and politically important commodity. A short term view of joint venture usefulness, however, ignores the fact that world markets for fish and fisheries products are highly competitive and volatile. Even the Japanese experts (Mitsui, Taiyo, C. Itoh) have lost millions of dollars playing the tund marketing game (Kitson and Hostis, 1983). Whether it is in the best interests of coastal nations to undertake this risk, and try to develop capabilities to market their own fishery resources is not altogether certain. Perhaps, therefore, export marketing joint ventures should be viewed as more permanent arrangements, to be carefully guided and controlled so as to achieve export marketing objectives.

Acknowledgements

This research was supported in part by project PP/R-7, "International Joint Venture Arrangenents and Commercial Fisheries Development in the Pacific Basin" which is funded by the University of Hawai Sea Grant Program under Institutional Grant \#NABIAA-D-0070 from NOAA, Office of Sea Grant, U.S. Department of Commerce. The author remains responsible for all errors and omissions.

References

Aprieto, V. 1981. Fishery Management and Extended Marttime Jurisdiction: The Philippines Tuna Fishery Situation. East-West Environment and Policy Institute Research Report No. 4, East West Center, Honolulu.

Ayal, I, and J. Zif. 1979. Market Expansion Strategies in Multinational Marketing. Journal of
Marketing (43): 84-94.

Bailey, E. and A. Friedlaender. 1982. Market Structure and Multiproduct Industries. Journal of
Economic Literature (20); $1024-1048$.
Chudson, W. A. 1975. Multinational Enterprises in Developing Countries: Some Issues in the
Manufacturing Sector. In P. Boarman and R. Schollhanmer, Editors. Multinational corforations
Governments: Business-Government Relations in an International context Multional Corporations and
Copes, P. 1980, Brit New York: Praeger Publishers. State. Marine Policy (4): $205-214$. Fisheries and the 200 -mile Limit: Perverse Effect for the Coastal
Crutchffeld, J., R. Hamlish, G. Moore and C. Walker igns
Ocean Fishery Commission IOFC/DEV/75/37, Rome, Italy. 1975, Dotnt Ventures in Fisheries. FAO/NDF indiar.
Friedman, W and G.
York: Columbia University Press.
Government of Vanuatu, Office of Natural Planning and Statistics. 1982. Vanuatu Statistical Bulletin.
Santos, Vanatu.
Hamlisch, R. 1974, The Role of Joint Ventures in Establishing Fishery Industries, in R. Rreuzer,
Editor. Fishery Products. Surrey, England: Fishing News (Books) \perp td.
Johnson. H.G. 1973 . International Trade and Economic Development. In P. Streeten, Editor. Trade
Strategies for Develoment
Kan New York: John Wiley and Sons.

Kaczynski, V. 1981. International Joint
the 15 th Annual Conference of the La of ontures in the North Pacific Fisheries. Paper presented at
Kaczynski, 1984 ,
(Export Market. Marine Policy 8(1): 16-29.
Kaczynskt, V. and D. Leveil. 1980. International doint Ventures in World fisheries

- Washington Sea Grant, Technical Report WSG-80-2. Seathe, Washington. Their Distribution

Keesing, D. B. 1967. Outward-Looking Policies ad
303-320. Wutward-Looking Policies and Economic Development. The Economit Journal (77):
Kent, G. 1980. The Politics of Pacific Island Fisheries. Boulder, Colorado: Westuiew Press.
Kitison, G. and D.L. Hostis. 1983. The Tuna Market. Asian Development Bank and FAO INFOFISH Market
Studies Volume 2, Kuala Lumpur, Malaysia
Kotler, P. 1984. Marketing Managenent. Englewood Cliffs, New Jersey: Prentice Hall, Inc.
Kotler. P. 1984. Marketing Management: Analysis Planing and Control Fifnes
Cliffs, New Jersey: Prentice-Hall. Inc. Analysis Planning and Control. Fifth Edition. Englewood
Leaney, C. and D. Lea. 1967. Some Recent Changes in New Hebridean Trade. The Australian Geographer
(10): 286-297.
Martin, G., Y. Matsuda, J. Bardach, S. Comitini, and 5. Hardjolukito
of Dptions for Tuna Longline doint Ventures in Southeast Asia: Indonerial. A Strategic Goal Analysis
Report No. 3, East-West Environmental and Policy Institute, East-West Center, Honalus Study, Research
Meltzoff, S. and E iPuma, Hen A Holulu, Hawaif.
Development In the Solomon Isiands. A Japanese Fishing Joint Venture: Worker Experience and National
Technical Report 12. Manfla. Phifippines.
Panzar, 3. and R. Willig. 1981. Econemies of Scope. American Economic Review (?1): 250-272.
parry. T. 1900. The wiltinational Enterprise: International Inuestment and
Gremmich, Connecticut: JAI Press, Inc.
Hedngs, P. 1993. Recource Use Arrangenents in Southonst Pacific Fisheries. East-Nest Pacific Island

The Oriental Economist. 19R4. Japan Company Handbook. Tokyo: Dai Nippon Printing Co., Led.
Yominson, J. and p, Erown. 1979. Joint ventures hith Foresgners as a method of Exploiting canadian Fishery Resources Jnder Extended Fisheries Jurisdiction. Ocean Management (5): 251-261.
 Zones. Journal of Fisheries Rosedrch Eoard Carada (32i: 2569-257f.
'Inited Nations Food anc Agriculture arganizafion (Fac), Anmal. Yeartmok of Fisheries Statistics. Fishery Information, Data aristatistics bivision. Rome, Italy.

Walmsley, J. 1 gez. Handbok of stemationd doint Ventures. bindon: Graham arid frotman, Ltd.
Wilson,. . 966 . Econgmic Survey of New Hebrides. London: Her Mojesty's Stationery office.

Fisheries Management: Theory and Practice

Imperfect Competition and Transboundary Renewable Resources: The Implications for Fishery Control Policies

Susan M. Capalbo
National Center for food and Agricultural Policy
Resources for the Future
Washington, DC, USA

Richard E. Howitt
Department of Agricultural Economics
University of California. Davis
USA

Abstract

This oaper presents a nonlinear optimat control framework for modelirg a renewable resource industry thich is characterized by a competitive harvesting sector, a monopsoristic. or oligonsonistic processing ector, and a transboundary resource stock. The model is conprised of three interrelated parts: the ishern ond a the biological growth and recruitment relations, and the wholesale demand eldions suppiy relacal analys is pertains to the North Facific Halibut fishery which is primarily a The overall thrust of the results is toward strict conservation of bilateral fishery (U.S. and Canaca). The overall thrust of the market price offered to fishernen.

\therefore Introduction

ouer the sast two decades increased attention has focused on andyzing the impocts of restricting use of and access to commen property fishery resources. With the exception of Clark and Munto (i98i) and crworess scrworme 1983 , the nanagenent weder of participants, catch levels, gear restrictions, season management restrictions on the number regulatory techniques entail transaction costs and infriage on the economic 'freedom' of the participants.
Firthermore, the extent to which the benefits from restricted resource use at the harvesting level are passed on to consumer depends on the market structure of the processors and other intermediaries. Some of the aroblems associated with management policies aimed at the harvesting sector may be derived denand the nagnitudes of the costs reduced by developing regulatory schemes that operate oneme directed demand of the harvesting sector. This paper focuses, in part, on analyzing management schemes directed at the processors as a potential means of regulating the exploitation of this fishery.
A second focus of this paper is on the transboundary characteristic of the resource stock. Mational A second focus of this paper is on the sole ownership within each country will not succeed in achieving optimal utilization rates. Furthermore, the transboundary nature of the resource often hinders development of effective institutional frameworks for management and conservation.
In analyzing management schemes for transboundary renewable resources, consideration is given to the In analyzing management schemes for transbure stocks (biological externalities) which in turn affect future supplies, and the price/quantity impacts of the product markets of trade among the harvesting future supplies, and the price/quantity mpacts to developing optimal utilization rates for countries. The theoretical constructs applicable in production economics and demand analysis. The transboundary resources are 5 imflar to those useducteristics further constrain the model and are biological externalities and common property character, the marginal conditions for optimality in reflected in the qualitative properties. For example, the margina coll user costs, taking into account
 ooth the social and private costs of production and resoctial lacross individuals and countries; atui transboundary renewable resources are composed of both time dimensions.
The overall objective of this paper is to provide a framework capable of assessing the econosic and bialogical consective of this paper wh alternative policies for transboundary renewable resources.

We wish to acknowiedge funding support frow the Hational Marine Fisherics Seryice and Sed Grant office.

From this framework are obtained both the quantitative and the qualitative conditions craracterizing an optimal utilization path of the resource stock under the economic conditions stated above.

The specific objectives, as they relate to the empirical portion of the andysis, are:
(1) to construct a bioeconowic model which reftects the bitateral (l.S. and canadian) interdeperdence for utilizirg the North Didific halibut resources; and
(2) using the reswlts of the bioecomomic model, to determine atd compare the quantities rarvested and sold in the $\mathrm{J}_{\mathrm{s}} 5$. and Canada, and the relotive market prices, under various polity alterna*ives and institutional arrangements.

The paper proceeds as follows: The specification of the bfological and ecanomic components of the policy model are discussed in Sectian II along with the qualitative properties of the riodel. Estimates of the parameters of the monopoly/monopsony model are given in section [II. A discussion of the inplications of the resuits for fishery management policies is provided in the cinal section.

II. Theoretical Framework

The basis for developing the model described in this section is the premise that the benefits thet smould theoretically result from an optimal harvesting scheme for remewable resources may not be forthcoming to final consumers due to moncompetitive elements. The processor allocation model developed in this paper is a detemministic optimal control model consisting of a set of difference equations represprting the "system" (the halibut industry) that is being controlled, det of constraints and ternifiul conditions imposed on the variables of the system, and an objective function which quatitatively measures the performance of the model.

For the North Pacific halibut industry, the preliminary investigations into market structures indicate that fmperfect competition occurs on the selling side of the product market and on the buying side of the factor market in both the U.S. and Canada. Therefore, the two submodels which comprise the processor allocation mode? are cast in a monopoly/monopsony made.

The processor's problem is to maximize net returns from sales of the resource product over his entire planning horizon. subject to downard sloping market demand and a supply constraint on tie resource inputs. Since the processor is a monopolist he can choose the quantity to place an the market in period t (or alternatively, at what price to sell his output): and since he is also a momopsonist, he can docide what exvessel price to offer fistermen and at what rate to deplete the resource stock. If the processor knows the supply response functions of the fishermen, selecting an exvessel price is equivalent to selecting the quantity of fish he wants to purchase from the harvesters. on the product side, the processor is detemining the optimal pricing over time, or alternatively, the optimal allocation between inventories and current sales.

The fishermen's control variables are the quantities of raw fish to sell to the processor in both countries. The soiution to the fishemen's problen will be in terms of harvest rates as a function of the exvessel prices. The processors' control variables are the exvessel prices to offer fishermer and the quantities to place on the wholesale market in the current period. Control over the quantity of fish harvested can be exercised through the market mechanism.

Processor allocation model
The behavioral interactions for the monopsony/monopoly processor model are schematically represented in Figure 1 . The exuessel supply responses (lA) and the wholesale denand relations (lB and 16) are needed information for empirically implementing this model.

The processor allocation model used in the empirical application is comprised of submodels for the two countries. These subnodels are interdependent with respect to sapply responses of the fishermen in each country and with respect to the trade flows and market demands for the final products. The objective function reflects the tolnt maximization of net revenues to processors in both countries. The marginal conditions reflect the frapact on the welfare to both countries of an exogenous change in either country"s control vartables.

The landings supplied to the U.S. and Caradian processors are detenined by the relative exvessel prices offered by esch processof, the level of the steck, and the costs involved in travofing to different. ports. . Tee level of procetsors ${ }^{2}$ dend for raw fish is influenced by demand determinants for the final product and the processing and freging costs.

On the product side, the total supply of halibut propucts constists of current production and holdover inventories. The levels of curront whdtlight

Resuugic Factor Market

Inventory accumulation decisions for halibut products are important. Under open-access harvesting conditions, a competitive processor is uncertain as to the avalability of fish to him in future time pertods and therefore holds inventories of frozen fish products. A collpetisive zrocessor would be unwilling to forego, entirely, purchases of raw fish which may not be consumed in the current periot since his conservation efforts will be counteracted by other processors. Iri contrast, a monopsonistic processor has the choice of maintaining a supply of raw fish in the orean, wrere it will grow over time, or in the freezer. His decision deoends on the costs involved in the freezing operations and the costs associated with not hawing immediate access to products to fulfill unexpeited chatiges ir demar.d. These decisions are reflected in the marginal conditions for tine optitization model.
In summary, the 4.5 . and Canadian processors are faced with the problem of simultanoously equating demand and supply in two markets--the exvessel or factor market and the wholesalefretai? rarket. processors need to offer an exvessel price so that the resulting quantities supplied by the fishermer fulfill the level of current sales and the level of inventorles which maximize the processors' prosits over time

III. Empirical Analysis

The optimal control model is comprised of a set of wholesale demand relations, a set of fishermen's supply functions, a set of biological relations to descrithe the dynanics of the bionass, and a criterion function.

Since the available information on halibut consumption is insufficient for estimatirg retail demand functions, consumer preferences are assumed to be reflected in the derived denands facing the processors. Two assumptions are made with regards to the wholesale demand specifications. First, wholesalers do not significantly change the level of their inventories between periods. The quantity sold by processors in period t is approximately equal to the quantity purchased by consumers in period t. Second, competitive conditions exist at the wholesale and retail levels in both countries. The wholesale-retail margins reflect handing costs and not increased profits.

The 1.5 . retail demand is satisfied by U.S. processed halibut and exports frum Canda; therefore both quantities enter directly into the U.S. processars' derived demand function. Canadian retail demand is met by Canadian production only. ${ }^{1}$
The derived demand facing U.S. and Canadian processors are specified in price dependent form as:

$$
\begin{aligned}
& P_{t}^{w_{u}^{u}}=f_{u}\left(q_{t}^{u u}, q_{t}^{c u}, \psi_{t}^{u}, z_{t}^{D u}, w_{t}^{u}\right) \\
& P_{t}^{w_{c}}=f_{c}\left(Q_{t}^{c c}, r_{t}^{c}, z_{t}^{D c}, w_{t}^{c}\right)
\end{aligned}
$$

where: $\mathbb{P}_{t}^{W i}=$ wholesale price in country $i, i=u, c$
$Q_{t}=$ quantity consumed in country i and processed in country j)
$Y_{t}^{i}=$ consumer incore in country i
$Z_{t}^{D i}=$ expgenous demand determinants (retail level)
$W_{t}^{1}=$ exogenous factors (wholesale level)
The fishermen's supply response functions are assumed to be based on profit maximizing behavior. These functions are not derived from a specific profit furction, but are ad hoc speciffcations which reflect the theoretical properties of supply functions. Two underlying detemimants of the supply responses are noted: the biomass effect, and the effects of the relative exvessel prices offered by U.S. and Canadian processors on the allocation of landings. Landings per unit of effort in any given period are variable. If effort levels are constant, the variability in landings is due primarily to variations in the size of the biomass. As the biomass increases, landings per unit of effort also increase; alternatively, to harvest a given quantity of fish, the amount of effort required is inversely related to the biomass levet.

The delay-differtnce ($D-D$) wodel developed by Deriso (1981) is the basis for the biological component of the model. It features the athematical simplicity of traditional stock-production models and the agestructure wodel for the halibut fishery, providing a model that can be used with limited data.
A.0-t model applifed to the hallbut fishery can be spectifed as.


```
\(S_{t}\) F the difference between the bionass of dult halibut and the setline catch. \(\mathrm{B}_{\mathrm{t}}-\mathrm{C}_{\mathrm{t}}\);
```

$C_{t}=$ settine catch of haibut;
$p \quad=$ biomass growth coefficient; $\mu \geq 0$. No units;
$2 \quad=$ annual natural survival fraction;

FB(.) = biomass of k year old progeny.
The base model criterion function is specified in terms of maximizing the present value of net returns to the U. 5 , and the Canadian processing sectors over the entire horizon. Net returns are defined as the difference between qross revenues and total costs. The lewel of retarns to the U.S. processor is affected by the quantity of halibut exported from Canada to the $\boldsymbol{j} .5$. Llewise, the value of Camadian exports are affected dy the ountity placed on the 3.5 , market by the $\mathcal{V} . S$. processing sector.
A summary of the model specification in functional form is given ir Table s. ${ }^{2}$ Stragit forward and analytical procedures of solving for the 1 inear control rules would be applicable if the processor allocation model conformed to a linear quadratic specification. However, it is difficult to obtain an analyticat understanding of the dynamics of the optimal policy when dealing with nonlinear mopels and nonquadratic criterion functions. The optimal control path cannot he stated as functions of the observed economic uariables. Chow (1976, chapter 12) discusses the feedback form of the solution to nomlinear deterministic systems. The implementability of this procedure depends on the degree of conlinearity and the overall dimensions of the model.
A second approach is to solve the control problem mumerically. Under an apen-loop structure, the
algorithm solves for all of the control wectors for all time periods, $\mathrm{w}_{1} \ldots$... L_{y}, in each iteration. In essence, the method employed to solve the processor allocation model is an open-loop procedure; it first provides a linear approximation to the nonlinear model and then aoplies a gradient method for maximiting the criterion function. The numerical algorithm which is utilized ir this research is MINDS/AUGMENTED. ${ }^{3}$

3.1 Wholesale Demand and Fishermen's Supply Functions

The wholesale demand and input supply relations, and the inventory identities can be initially considered as a sustem of equations which describe the halibut industry. Given the evidence that the halibut markets are not perfectly competitive, the product demand equations and the fishermen's supply responses constitute separate blocks in the system.
Since those equations need to be incorporated into the processor aliacation model, it is important that the relationships are specified as suctinctly as possible, but still retain desirable properties. Thus in the regression estimates that follow, the exogenous demand shifters relating to ($7_{t}^{\mathrm{Dc}}, \mathrm{w}_{\mathrm{t}}^{\mathrm{L}}, z_{t}^{\mathrm{Bu}}$, and $\mathrm{w}_{\mathrm{t}}^{\mathrm{c}}$) have been omitted from the specifications. In general, this omission will result in biased estimates.
A second modification concerns the separation of the Canadian and U.5. quantity variables. Because of a strong collinearity between these two variables only the quantity which, a priori, has a negative effect on price is included. For any given Canadian production level, ft has an inverse relationship to wholesale prices im Canada, while the quantity exported to the Jnjted States, $\mathrm{Q}_{\mathrm{t}}^{\mathrm{Cu}}$, should have a direct effect on wholesale prices in Canada. The Canadian derived demand function inchudes 0 tc in the specification but not $Q_{t}^{c u}$. For the United States, $Q_{t}^{U U}$ and $Q_{t}^{c u}$ are included in the demand specification.
Two specifications of derived demand retations were postulated. In the first specification, price in each country 15 a function of the quantity sold on the respective markets and the personal dispesable income, while the second spectfication excludes the income variable from each relationship. Three indic. standard errors and the absence of conclustive evidence of serial correlation. The results shown in Table 2 are utilized in the remainder of this study. Own-price elasticities calculated at the mean prices and quantities and at the 1976 prices and quantities, are reported in Table 3.
For both countries, the dertved demands are price elastic when evaiuated $z t$ the mean values and at the 1976 values, with the elastictties increasing almost threefold in 1976 from the values calculated at thit means due to 1 imited supplies. These elasticities are theoretically consfstent : namely that profit maxiafzing monopolist produces in the elastic region of the demand curve.
An initfal examination of the exvessel price data revealed a high correlation between the exvescel prices offered by 0.5 . and Canadian processors. Whem the supply response equations were estinated using both the it H curessel prices, there were theonsistent signs and low t-statistics on the

Griterion Pumetion:

Suiblect to:
Blolofical Growth and lecruicenat:

Variabla Baftaition

** diecount factor;

$z_{t}^{b y}$ locions

rit tranfer coute fros 1 to the u.s. serket:

It: eadref-periad toldinte by proceatarif ia country i;
fit oryanatil price offored by proceasena do country t $\mathrm{B}_{\mathrm{t}} \mathrm{t}$ bicances
 C_{t} * methise cetent

Di blolotical trowth eonffceient:
I: mamal metrel muryiwil tunetion.

Table ?. Jeriurd Defland Equations: wholesule Price as a Furction of Wholesule Quantities, 1960mpata Estimation echnique: Seemingly incelated Regressions

Table 3. Own-Price Flasticity of Demand

	Using Meàm Values	Using 1976 Values
United States	-1.48	- 4.89
Ganada	-3.72	-10.57

parameter estimates for prices, concurrent with significant walue of the f-statistic. This suggests that the separate influence of each price on the quantity supplied is weak, relative to the joint influence of prices 4 since increasing the size of the sample is impossible, oniy one of the price variables is inciuded in each equation. In this regard we are committing a specification error by omitting a relevant variable, thereby biasing the estimates. However, the bias which may be introduced by specification etrars is less serious than having inconsistent signs for the price coefficients and being unable to disentangle the effects of the U.S. and Canadian exvessel prices on the quantities supplied.

Two considerations are important in specifying the functional relationship. First, an increase in biomass should, ceteris paribus, shift the supply curve $(G=f(\rho))$ to the \quad eft, since the marginal cost of catching a given quantity of fish is lower at higher biomass levels. Furthermore, for any given price, the rate of increase in the quantity harvested should be decreasing as biomass increases.

The second consideration concerns the effect of the exvessel price on the quantity supplied. Holding the biomass level constant, one would expect a direct relationship. with a positively sloped supply curve. But crowding externalities and marginally increasing costs of effort modify the supply response. To reflect these two conslderations, the exvessel prices and the biomass variables enter nonlinearly in the input supply equations, $\left(\mathrm{p}_{\mathrm{t}}^{\mathrm{u}^{\mathrm{a}}}\right)^{1}$ and $\left(\mathrm{B}_{\mathrm{t}}\right)^{\mathrm{a}_{2}}$:

$$
\begin{aligned}
& x_{t}^{u(u)}=a_{1}\left(p_{t}^{u}\right)^{a_{1}}+b_{1}\left(p_{t}^{u}\right)^{a_{1}}\left(B_{t}\right)^{a_{2}}+e_{t}^{u u} \\
& x_{t}^{u c}=a_{2}\left(p_{t}^{c}\right)^{a_{1}}+b_{2}\left(p_{t}^{c}\right)^{a_{1}}\left(b_{t}\right)^{\alpha_{2}}+e_{t}^{u c}
\end{aligned}
$$

$$
\begin{aligned}
& x_{t}^{c c}=a_{3}\left(p_{t}^{c^{2}}\right)^{a_{1}}+b_{3}\left(p_{t}^{c}\right)^{a_{2}}\left(s_{t}\right)^{x_{2}}+e_{t}^{c c} \\
& x_{t}^{c u}=a_{4}\left(p_{t}^{u}\right)^{\alpha_{1}}+b_{4}\left(p_{t}^{u^{\prime}}\right)^{a^{\prime}}\left(B_{t}\right)^{a_{2}}+e_{t}^{c u}
\end{aligned}
$$

where α_{1}, a_{2} are between 0 and 1 . And the error terms, are contemporanepusly correlated.
This specification has two important characteristics. First, the price elasticity ct suaply is constant and equal to a_{1}. Secondly, in response to change in biomass level the suphly curve does not sinift in a parallel manner. At higher prices, a given biomass increase has a larger absolute effect on the Gunties supplied than
Econometric Results. The values of a_{1} and a_{2} need to be determined before supply equations can he estimated using a two-stage estimation procedure. For each equation, the results from an ordinary least abtined for the four inpul for various vatues of a_{1} and a_{2} were comored. The best overall fit abtained for the four input supply responses was obtained when a, and iz were both equa' to 0.5 .
The input supply equations are estimated utilizing 7ellmer's method for seemirgiy unre:ated equations of the input supply estimates correlation of the error terms across the subply equations. The results號 $=0.5$, are provided in Table 4.
1 percent level, and there is no indication of the "price times biomass" variabies are significant at the ondion of dutocorrelation problems.
In the first equation, the quantity supplied by the U.S. fishermen to the U.S. processors, $x_{t}{ }^{4 u}$, is 30.59 milifon pounds (MP) exvessel price offered by the $U . S$. processors for biomass lovets greater than magnitude of this effect is Bomass has a positive effect on the quantity supplied, although the of these two variables in the current time period are:

$$
\begin{aligned}
& \frac{\partial X_{t}^{U U}}{\partial P_{t}^{U U}}=\frac{\left(3.560 \sqrt{B_{t}}-19.364\right)}{\partial \sqrt{P_{t}^{u}}}=0 \text { for } B_{t}>30.59 \\
& \frac{\partial X_{t}^{U U}}{\partial B_{t}}=\frac{\left(3.560 \sqrt{P_{t}^{U}}\right.}{\partial \sqrt{B_{t}}}>0
\end{aligned}
$$

As evident from the equations above, each impact depends on the level of biomass and the exvessel price. The price elasticity of supply, e_{s}, is inelastic and constant (.50) at afl combinations of price and
tiomass. The elasticity of supply with respect to a change in bfomass, $e_{B}^{\text {uu }}$, exceeds 1.0 at all relevant priced biomass combinations (Table 5). It is interesting to note that at any given biomass level, eud increases as the exvessel price increases. The responsiveness of x_{t} du to changes in the biomass levels and in the exvessel prices at various price/biomass combinations becomes crucial to understanding the short-term and
long-term policy implications of various management schemes. For the Canadian supply equations, the patterns of responses are similar to those exhibited by the
quantity supplied by $U .5$. fishermen to quantity supplied by U.S. fishermen to U.S. processors. The econometric results indicate that the exvessel price offered is positively impacting $X_{t}^{c r}$ and $X_{t}^{c u}$ at biomass levels in excess of 34.49 MP ,
respectively. The price elasticities of surnl; arc ineiastic and constant for both $X_{t}^{c c}$ and $X_{t}^{c u}$ at all price/bionass combinatfons. Furthermore, the elasticities of supply with respect to biomass changes are elastic. At
high biomass levels (50.0 mp) the degree of elasticity al so decreases. In comparing the four input supply Hiomass level are highty elastic, especially at bromass levels in the peighth respect to changes in the Gomast level are highly elastic, especially at biomass levels in the neightorhood of 40.0 MP . Df the

Table 4

Input Supply Equations: Quanticy Harvested Kelated to Exvessel Price and Blomass Level, 1970-1977a Estimation fechniyue: Seeningly Uncelated Regreasions for Nonlinear Equations

	Independent	Variables			Summaty Statistics		
Dependent Variable	Price offered by U.S. processors $\sqrt{p u}$	Price offered by Canadian processors $\sqrt{p c}$	Price, Crob $\sqrt{\mathrm{pu}}$	Eiomass -Teril \sqrt{B}	Number of observations	Standard error of the equation	$\begin{aligned} & \text { Durbin-ilatson } \\ & \text { statistics } \end{aligned}$
$\mathrm{X}_{5}^{\text {uu }}$	$\begin{aligned} & -19.364 \\ & (-5.92) \end{aligned}$		3.560 (6.79)		8	.153	1.36
$\mathrm{K}_{\mathrm{t}}^{\text {Le }}$		$\begin{gathered} -4.264 \\ (-10.73) \end{gathered}$.699 (10.98)	8	. 018	1.56
$\mathrm{X}_{\mathrm{t}}^{\mathrm{cc}}$		$\begin{aligned} & -28.896 \\ & (-9.14) \end{aligned}$		4.920 (9.71)	8	. 148	. 14
$x_{t}^{\text {cu }}$	$\begin{array}{r} -18.250 \\ (3.06) \end{array}$		3.056 (9.24)		8	. 096	. 24

${ }^{\text {A Asymptotic }} \mathrm{t} \boldsymbol{s} \mathrm{tatiatics}$ are shoun in parentheses.
The Durbin-Watson statistic is computed from the ols residuals.

Table 5

Elasticitiea of Supply with Respect to Changes in Bfonast, $E_{B,}$ at Selected Prices and Biomas Levels*

BLomasat Elatticitiee of Supply				
Price/biomasa Level	${ }_{5}^{\text {u4 }}$	$\epsilon_{B}^{u c}$	$\epsilon_{B}^{c c}$	$E_{\text {cu }}^{\text {cu }}$
$\$.40 / 40.0 \mathrm{MP}^{\text {b }}$	3.39	14.69	7.07	9.03
\$,40/50.0 MP	2.17	3.67	2.95	3.23
\$.50/40.0 HP	3.58	14.87	7.09	9.14
\$.50/50.0 x	2.18	3.68	2.96	3.23

baeed on the following formulat:

3.2 Growth/Recruitment Relation

The statistical estimation for the tiological growth and recruitment relation was done sy Deriso (Ig8l). His results which are restated in Table 6 are based on the folluwing equation:

$$
g_{t+1}=2 \cdot(\Omega)\left(B_{t}-C_{t}\right)-\left(B^{2}\right) \frac{\left(B_{t}-C_{t}\right)}{3_{t}}\left(B_{t-1} C_{t-1}\right)+(n)\left(: x_{i}^{\prime}(:)\left(3_{t-5^{-C}}^{t-5}\right)+{ }^{1} t\right.
$$

where ${ }^{2}$ = annal natural survival fraction;
$m=$ survival coefficient used as proxy for the affect of incidental citches;
$a=$ transformed spawner-recruitment parameter;
and all the variables are as defined previously.

Table 6. Estimates for the Biological Growth and Recruitment Relations, for the Period $192 \mathrm{~g}-1979$

Parameter	Parameter Estimate	Stardard Dev
	0.833	5.073
m	. 645	0.016
a	. 105	0.031

Source: Deriso (1981), Table 2.

3.3 Processor Allocation Control Model

In this section the demand, supply, and growth relations are inbedded irto tre processor allocation control mode? to yield the optimal utilization rates for this resource when the processing sector is characterized by a monopsony/monopoly. This scenario is referred to as the ease Model. Errors due to misspecification of the Base Model, serial correlation, or other statistical problems in the regression estimations are carried over into the control model. Even more inportantly, however, is the extension of the regression results beyond the range of data obserwations. A dositive rclationship setween exvessel price and quantity supplied is also contingent upon the level of biomass exceeding a critical iower bound. Furthermores at low exvessel prices for halibut, fishermen may divert their efforts to other species. Since the specifications utilized in this study do not account for these "unknown reactions," or structural shifts, bounds on the state and control variables are defined.

For global optimality, the necessary and sufficient conditions must hold over the entire dond in for a solution to exist, The Lagrangian must be concave in both the states and controls; the constraints are linear in the states and controls; and the equations of motion are either concave or convex in the states and controls, and have mon-zero costates.

The sufficient conditions for a global optimum are often violated when dealing with empiricalty-estimated onjective functions. By restricting the constraint set to lie in a certain subspace in the doman, the objective function may be concave over that given region; and thus a global optimun obtained relative to the restricted subspace. When the processor allocation model was estimated without restrictions placed on the states and controls the model converged to a locally optimum statiomary point.

The parameter estimates used in the Base Model are presented in Jable 7 . The sensitivity of the results of the Base Model to change in costs and tariffs is discussed in Capalbo (1982\}.

A time horizon of ten years is chosen to allow the effects of the dynamics of the bioeconomic model to be evident. As noted earlier, as the model horizon extends beyond the data period the likelihood that structural changes will after the regression coefficients increases. Furthermore, since the processor allocation model is not updated during the solution algorithm, the value of projecting a $20-$ or 30 - year poltcy without sare feedback is questionable.

The controts are the exvessel prices and the wholesale quantities that maximize the discounted rents to the processing sectors. The optimal values of the control variables and the state variables in the final solution for the base model dre presented in Table 8.
The exyessel prices, $P_{t}^{\mathbf{4}}$ and P_{t}^{C}, are set at the lower of $\$, 22$ per pound. The optimal strategy for the processors; as deternined by the model. is to buy the shallest quantity of landings that the model permits, thus allowing the bignass level. to increase. At larger biomass levels, the fishermer are fifiling to supply farger quantities of fish at a given price. Because of the relative magnitudes of the effects on the quantity supplied associnted with facreases in prices and bioflass levels, this behavior is

Table 7

Sumary of the Parameter Values for the Base Yodel

Item

Table 8

Realts for the Base Model with Envessel Price Constrained to be ≥ 9.22

1	37.276	1.114	0.006	0.534	0.203	1.858	0.000	0.000
2	38.098	1.226	0.028	0.638	0.299	2.242	0.000	0.000
3	38.664	1.303	0.043	0.795	0.365	2.506	0.000	0.000
4	38.934	1.338	0.051	0.844	0.396	2.628	0.000	0.000
5	39.091	1.359	0.054	0.872	0.413	2.700	0.000	0.000
6	39.142	1.366	0.056	0.882	0.419	2.724	0.000	0.000
7	39.177	1.370	0.056	0.889	0.424	2.740	0.000	0.000
8	39.224	1.377	0.058	0.897	0.429	2.762	0.000	0.000
9	39.283	1.385	0.059	0.908	0.436	2.789	0.000	0.000
10	39.343	1.393	0.061	0.919	0.442	2.816	0.0000 .000	

$\begin{gathered} \text { Tine } \\ \text { Period } \end{gathered}$	Comtrol Fariables							Shadou Prices						
								B_{t}	$\mathrm{X}_{5}{ }^{\text {Hu }}$	$\mathrm{X}_{t}{ }^{\text {uc }}$	$\mathrm{X}_{5}{ }^{\text {cc }}$	$\mathrm{X}_{\mathrm{t}}{ }^{\text {cu }}$	$\mathrm{I}_{\mathbf{t}}{ }^{\text {a }}$	$I_{t}{ }^{\text {c }}$
	Qt^{24}	$Q_{t}{ }^{\text {cc }}$	$\mathrm{Qt}^{\mathrm{Cu}}$	$\mathrm{P}_{\mathbf{t}}$	P_{t}			$\left(\rho_{1}\right)$	(${ }^{2}$)	(03)	(04)	(os)	(0_{6})	(07)
	dollars per pounds													
1	1.647	0.355	0.255	0.220	0.220	1.252	0.854	0.169	0.523	0.523	0.523	0.523	0.547	0.547
2	1.525	0.349	0.368	0.220	0.220	1.253	0.855	0.866	0.170	0.170	0.170	0.170	0.529	0.523
3	1.687	0.657	0.381	0.220	0.220	1.234	0.836	0.765	0.156	0.156	0.156	0.156	0.476	0.476
4	1.734	0.508	0.386	0.220	0.220	1.225	0.827	0.678	0.159	0.159	0.159	0.159	0.444	0.444
5	1.773	0.537	0.390	0.220	0.220	1.219	0.822	0.593	0.167	0.167	0.167	0.167	0.420	0.420
6	1.785	0.547	0.391	0.220	0.220	1.218	0.820	0.507	0.179	0.179	0.179	0.179	0.402	0.402
7	1.794	0.553	0.392	0.220	0.220	1.217	0.819	0.411	0.199	0.199	0.199	0.199	0.386	0.386
\%	3.806	0.542	0.393	0.320	0.220	1.215	0.817	0.306	0.235	0.226	0.226	0.226	0.370	0.370
9	1.821	0.573	0.394	0.220	0.220	1.213	0.815	0.194	0.267	0.267	0.267	0.267	0.355	0.355
10	1.835	0.505	0.395	0.220	0.220	1.211	0.813	0.086	0.339	0.339	0.339	0.339	0.339	0.339

rational. The benefits of restricting catch in period 1 is manifested through the larger levels of biomass made available in later periods, and the subsequently larger catches for the same exvessel price of $\$.22$ offered by the canadian and $U .5$. processing sectors. The sum of the discounted processors' net returns are increased by foregaing production in the early periods. The exvessel prices in the final periods do not exceed the established lower limit on price. This implies that at the end of a ten-period harizon, the exvessel prices which equate the marginal revenue and the marginal input supply curves are still below $\$.22$ per pound. If the number of time periods were to be extended, it is anticipated that the prices in the final periods would eventually exceed the lower price bounds.
On the product side, the optimal tine path for inventories is cero. 5 The intial level of hold-over anventories at the onset of the model, are immediately reduced to zero, implying that it is more costly to keep fist in the freezer than to hold them off-shore for future harves:s.

Domestic utilization levels and exports from Canca to the lis. are at positive levels for all time periods. Canadian processors sell approxinately fifty percent of their production to dorestit buyers, and export the remainder to the J.S. The time paths for the wholesale prites in the U.S. and canada are also reported in Table B. The price eldsticity of demand exceeds 1 . 0 and the margiral revence of sales in the U.S. is equal to the marginal revenue of sales in canada, in each period. ${ }^{6}$
The values for the costates (or shadow prices) corresponding to the state varidbles for the base Model are at so reported in Table 8 . The shadow price of biomass. ρ_{1}, measures the marginal value of the biomass constraint. The costate for biomass decreases over time as one would expect since later changes in biomass levels are less crucial to the system. The costates pn the exvessel quantities supplied, $\mathrm{r}_{2}(\mathrm{t})$ througn $\mathrm{p}_{5}(\mathrm{t})$, are equivalent in each period and increasing over time. The marginal valuations of the holdover inventories, $\boldsymbol{c}_{6}(\mathrm{t})$ and $\rho_{7}(\mathrm{t})$, are also equivalent in each period, but have a decreasing value over t ime.
The impacts of exogenous changes in the processors' control variables can be traced through the model via the first order conditions for the Lagrangian formulation. In general, exvessel price changes will affect quantities supplied in the same period, as well as the quantities supplied in the future via the biomass growth/recruitment relation. Changes in the quantities processed affect the level of inventories and also the amount of raw product demanded by processors. Changes in the derived denand for fish may initiate a change in the exvessel prices offered to fishermen and thus set off the chain of effects involving exvessel prices.

3.4 Implications of the Empirical Results

Given the behavioral and biological assumptions, the results reported in this section are the optimal time paths for the state and control variables. Based on the results the following properties of the processor allocation model can be deduced. First the current biomass is low. The biomass increases as catch levels are reduced, and these higher biomass levels support larger sustained yields from this fishery. Within the context of the processor allocation model, the optimal paths for the states and the controis indicate that fishing levels and catches should be reduced to the lowest tevel. All results such as the quantities processed and sold, are determined so as to maximize processor returns, but always under the overriding goal to rebuild the biomass levels.
Second, the solution to the base Model is not an interior solution. Since the supply responses and the demand functions are estimated over a given price/quantity range, it seems reasonable to restrict the model to operate within these ranges. There is no reason ta believe that the estimated supply functions and demand relations would lead to global optimal solutions. Furthermore, the Base Model is unable to reach an equilibrium state in ten time periods primarily because of the biological growth relations. If the time horizon was extended, the system may reach an equilibrium state, although this is conditional upon the equations of motion for the state variables being robust enough to capture the steady-state conditions.
Finally, the results for the Base Model may be generalized to other fisheries also in disequilibriun. To only consider static relations for economic supply and demand, without fincorporating the dynamic biological relationships into the input supply functions, is likely to yield misleading information to policy-makers.
Instability of the model was indicated by some of the eigen vectors of a linearization of the difierentral system around sone specitied puilits. Henterer, the instabilities in the system may be controlled via the policy or control instruments. Since exvessel prices are one of our curitiouis, it appears that lowering the exvessel prices may be a means for controlling the system. However, lower bionass levels are also associated with are stable conditions. In the processor-allocation model, lower exvessel prices, in effect, inply larger binass levels. These observed effects of exvessel price and biomass levels on the stability of the differentiai systea are evident in the results of the alternative policy scemarios. The formal tests for complete controllability and conditional controilability ire antisfited.

IV. Summary and Conclusions

Biomass externalities and the transboundary nature of the resource stork have insensified the management conflicts in the North Pacific hafibut industry. National narageners scheres trat are designed to foster sole mational ownershio of the resource are unikely to succefd in juricving octimal utilization rates. This study has explicitly considered the effects of harvest rates on fiture berass levels and consequent shifts in the supply responses of the fistermen.
The primary objective of this study has been to prowide a framewort capiatie of assessing the econaric and biological consequences associated witn alternative policies for transtoundary renerotyle resources. This objective has been successfully met by developing a theoretical pioeconoric inadel for the batidut industry, estimating this model, and then utilizing the estimates for policy analys. More specifically, two seqments of a dynamic systen for the halibut industry were corstructed and econometrically estimated. The first segment dealt with the fishermer.'s susply resprase functions. To capture the dynamics of the fisteries, the quantity supplied by the fishermen in the L.S. and Canada was related to both the exvessel prices and the biomass level. As the bioniss level charged the marginal cost of catching a unit of fish also changed, and thus caused shifts in the fishermen's supply response behavior. Both the exvessel prices offered by processors in the L'.S. and Condda and the biomass level are shown to be related in a nonlinear manner to the quantity supplied.

A second segment of the dynamic system dealing with the interdependerce in the J .5 . and Canadian product markets for halibut was also developed and estimated. The U.S. demand for ral ithut products is met by U.S. production and Canadian exports. The processing sectors in the two countries are deoicted as imperfectly competitive. Each has a degree of market power nver the quantity and arices at the exvessel and the wholesale levels. However, because of the trading between the two courtries and because of the biomass externalities. the decisions by one sector to raise or lower priccs, sinultaneously affects the user groups in both countries.
A third segnent of the dymamic system, the biological growth and recruitment relations of halibut, has also been discussed. The parameter estimates were obtained from a recent amalysis by Deriso (1981). These three segnents comprise the underlying dynamic system for the U.S. and Canadian halibut industry.

To assess the implications of alternative policy options, a nonlinear control nodel is developed. This model is based on the assumption that the processors are imperfectly competitive and the criterion function is in terms of maximizing net returns over time to the processing sectors. The necessary conditions for an optimal solution reflect both the direct and indirect impacts on the processors and fistermen. These impacts are due to the economic efficiency criteria of equaring marginal revenues and marginal costs and to the biomass stock externalities which have been imbedded in the fisterrien's supply responses. Changes in the supply response of fishermen in the $j .5$. in one period affect bath the Canadian fishermen and U.S. fishermen in subsequent periods, ds wel: as consumers and processors.

The results of estimating the nonlinear processor allocation control provide insight into the dynamics of the halibut industry. The preferred strategy from the processors' vantage point is to increase or "rebuild" the biomass levels by offering low exvessel prices to the fishermen. The immediate benefits to the processors, which are foregone in the earlier years because of smaller harvests, are outweighed by the benefits associated with a larger biomass level in the later periods. Again, the benefits from a larger biomass are traced through the shifts in the fishermen's supply responses over tine,

Results from the processor allocation model support the concerns by management agencies that the current biomass levels are significantly below the maximum sustainable yield biomass level. It is beneficial to the processors to restrict initial catch levels by offering low exvessel price5, thus permitting growth in the halibut resaurce. These benefits are quantifiable because the bionass growth and recruitment relations are incorporated into the control model and because the biomass level enters directly into the fishermen's supply respanses.
Further implications relate to the existence of imperfect competition at the processing level. That is, If the harvesting sector is fairly competitive but faces oligopsonistic processors, then from a management perspective, it may be easier to manage the fishery through the processing sector. This study thas shown that if the processors are "sole owners" of the resource, they will conserve the stocks in a maner similar to regulatory agencies. Thus, the enforcement and regulating costs of imposing restrictions such as limited entry and catch quotas on the fishermen may be minimized in fisheries characterized by an oligorsonistic progessing sector.

WS. processed hallibut exports to Canada are negligible.
4. It is noted that large variances for the parameter coefficients may exist even without
multicolinearity. The explanatory variables may have a small dispersion, or g^{2} may be large, The sariule coefficient of correlation is a valid indicator of multicolinearity when there are only two independert variables.
. Note that the hold-over inventories are annual inventories, carried over from one fishing season to the next, rather than monthly variations in Stocks of frozen kalibut.

The formulas for calculating the narginal revenues in the U.S. and Conada are:

$$
\begin{aligned}
& {M R_{t}^{U S}}_{U S}=1.49-.250\left(Q_{t}^{\mathrm{uu}}+\mathrm{Q}_{\mathrm{t}}^{\mathrm{cu}}\right)-.12-.15 \\
& M \mathrm{C}_{\mathrm{t}}^{\mathrm{CA}}=.997-.354\left(\mathrm{Q}_{\mathrm{t}}^{\mathrm{cG}}\right)-.12
\end{aligned}
$$

Bibi iography
Anderson, L. 1975. "Optimuri Economic Yield of an Internationaliy Utipized Common Property Resource," Fishery Bulletin 70:51-66.
Capalbo, S.M. 1982. "Bioeconomic Supply and Imperfect Competition: The Case of the North Pacific alibut Industry," uncublished Ph.D. dissertation, University of Lalifornia, Davis.

Chow, G.C. 1976. Analys is and Control of Dynamic Economic Systers, Wiley and Sons, New York.
Clark, C. 1976. Mathematical Bioeconomics: The Optimal Management of Remewasle Resources, wiley and Sons, Niew York.
Clark, C.W. and G.R. Munro. 1975. "The Economics of fishing and Modern Capital Theory: A Simplified Approach," JEEM 2:92-106.
Clark, C.W. and G.R. Munto. 1980, "Fisheries and the Processing Sector: Some Implications for Management Policy," The Bell Journal of Economics $11(2)$.
Crutchfield, J.A. and A. Lellner, 1963. "Economic Aspects af the Pacific Halibut Fishery." U.S. Bureau of Commercial Fisheries, Fishery Industrial Research (1), pp. 1-173.
Crutchfield. J.A. 1980. "Regulations of the Pacific Halibut Fishery," umpublished paper, Institute for Marine Studies, liniversity of Washington, Seattie.
Deriso, R.B. 1981. "Sources of Variability in a Delay-Difference Model: Application to Pacific Halibut," unpublished working paper, International Pacific Halibut Comaission.
Gordon, H.S. 1954. "The Economic Theory of a common Property Resource: The Fishery," Journal of Political Economy 62.
Munro, G.R. 1978. "The Optimal Management of Transboundary Renewable Resources," Resources Paper Ho 18, Department of Economics, University of British Columbia.
Murtagh, B.A. and M.A. Saunders. 1976. "Nonlinear Programming for Large, Sparse Systens," Technical Report S0L 76-15, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California.
Murtagh, B.A. and M.A. Saunders. 1977. "MINOS, A Large-Scale Nonlinear Pragraming Systen (for problems with i inear constraints)," User's Guide, Technical Report sol 77-9, Systems optimization Laboratory, Department of Operations Research, Stanford Univers ity, Stanford, California.
urtagh, B.A. and M.A. Saunders. 1978. "Large-Scale Linearly Constrained Optimization," Mathematical Programming 14:41-72.
Murtagh, B.A. and M.A. Saunders. 1980. WThe Implementation of lagrangian-Based Algoritha for Sparse Nonlinear Constraints, Technical Report 50L 80-1, Systems Optimization Laboratory, Department of Operations Research, Stanford Universtity, stanfond, California.
Schworm, W. 1983. "Monopsonistic Control of a Compon Property Renewable fesource," Canadian Journal of EConomics, XVI, Wo. 2, May.
Zellner, A. 1962. "An Efficient Method of Estiwating Seemingly Unrelated Regressions and Tests for Aggregation Bias," JASA 57:348-362.

Commercial Fisheries vs Aquaculture: Conflicts in the Northwest Salmon Fishery

James L. Anderson
Department of Resource Economics
University of Rhode Island
USA

James E. Wilen
Department of Agricultural Economics
University of California, Davis
USA
lntroduction
Aquaculture techmology may well prove to be one of the most signjficant factors in the world's salmon fisheries during the next several decades. At present, both fubitic, private, and cooperative aquaculture facilifies exist on the Pacific and Atlantic oceans. Public facilities rave been particularly important in North America for the past two decades prifrarily as means of mitigating damages associated with salmon habitat losses. Along the facific Codst, for example, hatchery facifities have been constructed to replace spawing grounds lost to hydroelectric dans on rivers including the Fraser in British Columbia, the Columbia in Oregon, and the Sacramento in California. Similarly, Alaska has implemented enhancement programs in several areas in order to rebuild runs in historically-productive systems. While total public hatchery production is fairty low on the whole, its potential is perhaps better gauged by noting its role pin a local scale. The supply from private aquaculture (ocean-caught and return to private facilities) represented approximately 30 percent of the total supply from coastal Oregon and forthern Californic (Anderson, 1983) in 1982, for example. In some areas of Alaska (e,g. in the southeastern District of Lower Cook Inlet), aquacultured stocks contributed up to 88 percent.

At though public mitigation-oriented facilities are most prominent in North America, private profitoriented facilities have been growing very rapidly elsewhere. Norway has led the industry in pen-rearing technology (enclosed raising from smolt to harvested adult) and Norweignoraised Atlantic salmon now successfully compete with Pacific-caught wild fish in the fresh fish markets of Europe, Japan and evert the Paclific Northwest. In addition to pen-rearing salmon formorth America smolts are also raised in hatcheries, released, and then harvested when they return from a maturation period in the open ocean, a practice referred to as salmon ranching. As yet, only the state of Oregon has allowed priwate profitoriented salmon ranching although Wastington state allows some subsistenceoriented salmon ranching by Native Indians and Alaska permits cooperative non-profit ranching.
What the future holds for aquaculture-produced fish in the pacific is somewhat speculative at this point. What is apparent is that there is enormous untapped potential. In Alaska and British Columbia alone, for example, there are thousands of miles of bays and inlets suitabte for pen-rearing and thousands more streams whose spawning capacities could be increased many-fold with hatchery facifities. Both regtons have had on the drawing boards very large-scale cooperative entancement programs totaling some $3 / 4$ billion dollars. During the last two yedrs, however, these programs have been put on hold and policymakers are now adopting a very cautious position towards expansion with new facilities. The caution has been echoed in Oregon with a moratorium on further development and in California with prohibition against artificially-reared fish other than for mitigation purposes.

Reasons for the current cooling of public support for aquaculture are many and varied. Some of the reasons are short run in that economic slowdowns in resource-based economies like Alaska and British Columbia have left little discretionary funding to embark on large programs, even if designed to be cooperafively financed once in operditiol. Ii uddition, howevpr, there has been considerable political resistance to private and cooperative aquaculture by fishermen themselves. While this may semis paradoxtcal at first (given that more fish would seem to mean larger harvest), there are some subtle reasons for such a position. One of the worries (also expressed by biologists) is that natural stocks might ta extinguished in fishertes where fishernen are havesting on mixed stocks. Another worry is that natural stocks will somehow be outcompeted or otherwise adyersely inpacted by density dependent factors associated with any large increase in salmon releases. In addition, there is the very prevalent feeling among fishermen that they will lose political control over "their" salmon rasobarces fif new entrants with
 aquaculture supply wifl have a substantial impact on prices

The natural stock extinction problem is, in a sense, more relavant in cases winere public enhancement is being used to rebuild a commercial fishery. The reasoning behind the worry runs as follows. in a mixed stock fishery di.e. one where fishermen take an identical, policy-fixed proportion of recruits fron both wild and hatchery stocks) benefits will be gained from hatchery-raising only to the extent thit the
 possible by the facility. But a higher exploitation rate an the rixed saock fishery will gredually eliminate the wild stocks. With private dquaculture, this problem can possigly be avoided sirce privafe factities add to the exploitation rate after the comprcial fishery. Hemce the mixed stock comercial fishery may be managed on the fishing ground at a lower exploitation rate to preserve wild stocks and the excess recruits can be captured and sold out of the privite hatthery facility.

With respect to the competition problem, there are indeed several potential foinis at witich aquacultured and wild stocks may compete. The first place is in the piver where smolts return to the occar. If artificially reared smolts compete with naturally-spawned stocks en route to the ocean, ther fishermen could conceivably be hamed. The second place is in the ocean when smolts return to mature dme the same considerations apply as in the river stage. From the fishermen's point of view, biaever, whether they will actually be worse off is really not clear. そhis is because it is likely that tre gairs froni returning aquacultured fish may more than compensate for the losses in matural fish.

We are left, then, with the issue of control over the salmon and, more broadly, the ocean and river resources. This issue is perhaps the more important one underlying debates between opponents and proponents of equaculture. It is easy to understand, given the fragmentary nature of fishermen's coalitions and the contrasting big business (Weyerheauser, British Petroleum) nature of uquaculture, how such fears might arise. Aevertheless, the real issue is how substantial the corflict in positions really is. Are there, in fact, reasons why aquaculturists might want and promote different fisheries policies than the fishermen themselves? If the answer is no, then perhaps aquaculture and compercia? fisteries can coexist. If there are substantial points of conflict, on the other hand, then we are likely to witness continued resistance and countermaneuvers over the short and intermediate term. In the ?ong rurn, however, what probably counts most in this debate are the relative efficiencies of the two techniques. If Horway or Japan or any other country can successfully market aquecultured fish, the domirant producing natural-production entities 7 ike British Columbia and Alaska may have no choice but to, albeit. reluctantly, entertain the prospect of artificially reared fish, either pen-reared, salmon ranched, or both. In a sense, what we may be witnessing here is no diffencht from countless other situations in history whereby old methods are challenged by new ones. What makes this slightly more interesting is that policy is so pervasive in the challenged industry that it is unctear whether certain policies diminish or magnify the conflict.

In this paper we address, in both general and specific fashion, the potential conflict between traditional cormercial fisheries and aquaculture. Im the next section we outline a conceptual franework for analyzing points of conflict. This is followed by a discussion of an application of the model to the Oregon coho fishery. Section three discusses some empirical findings and section four compares some optimization/simulation exercises with the model. The final section offers a summary and concluding thoughts.

Points of Conflict Between Aquaculture and Wild-5tock Fisheries

At the heart of the question of whether commercial fisheries and dquaculture can coexist are issues of externalities. Externalities have been defined in different was but they are best viewed in a general sense as linkages or points of feedback between decision makers in a system for which no market mechanisms exist. If there are no linkages or externalities between decision makers then we would expect no conflict over decisions and actions. As soon as we adntit a link between decision makers, mowever, one group's pursuit of its goals may hamper the other from attaining its best position. Standard examples focus on polluter-pollutee links but the concept is broad enough to include a range of activities including heroin use, reckless driving and burping at the dinner table. In these and many other externality situations, society has invoked policfes, laws, or customs to alter the amount of spillover impacts tramsmitted between decision makers.

In one sense, much of the political maneuvering by interest groups to exclude aquaculture in salmon has been based on claims that externalities exist between natural and artificial systems of raising and harvesting. The points ct potertiat cumfict have aiready jetil discussed athu inciude competitizm in the river systens and ocean between fish, as well as conflict at the fishing stage over mixed stocks.
Interestingly, there is nothing inherent about salmon aquaculture which makes these conflicts inevitable, he. in-river competition could be avoided by locating hatcheries on rivers without natural runs, ocean copetition can be ayoided by pen-rearing, and afxed stock problems can be minimized if fisheries are moderthen mearer to river wouths. Hevertheless, since much of the debate has focused on existing ftrems which do tend to involve some externalities, we will 1 ikewise focus our attention on these cases.

Fifure depicts points of interaction (i.e. potential externalities) between participants in a typical withtocth fistery (perhaps also aided by public hatchery production) and the salmon-ranching form of
aquaculture. As can be seeri, aquaculture complicates an already-complicated system in a manner that nakes even qualitative analysis ambiguous. For example, increased private aquaculture releases may for may nat) reduce natural returns due to instream or ocedn density effects. The net effect may still be positive (or negative) at the terminal fishery. If the effect is positive and the program is large enough, prices tay (or may not) fall enough to reduce profits, resulting in exit from the industry. relaxation of season length restrictions, etc. The point, however, is that it is not a prigri clear how aquaculture activities should arect typical noticies such as seasun length (or vice versa). Similarly, changes in pulic policy regarding public smolt releases and sedson length changes may or may not (through density effects agair) reduce aquaculture returns as fishery profits rise, etc. loviously, it is necessary te urderstand more about the quantitative interrelationships in order to better gauge who will gain and lose by various molicies. In the nex: section we discuss some empirical results in a case study of the 0regen cotio fishery.

Figure 1. Interaction Between Aquaculture and Comercia! Fisheries

A Model of Aquaculture-Natural Fishery Interaction
As discussed earlier, the state of Oregon is the only entity in North America which has allowed private salnon ranching for profit to develop. Releases of privately reared smolts increased from 88 thousand in 1974 to 231 thousand in 1982, a volume five times that of public hatchery releases. of total troll and sport-caught coho in 1982 of 844,100 fish, an estimated 122,100 were from privately aquacultured stocks whereas another 165,000 returned to private facilities as harvest. One large firm (a subsidiary of Weyerheauser) is responsible for most of the production.
In the modn? ing effent presented hown, wostimate the system depicted in Figure I by applying it to Oregon data and then use it to simulate impacts of some policies. in titu intecest af tetmy briaf, come of the details are skipped over in order to get to the conclusions. (Readers interested in mere details are referred to the discussions in Anderson, 1983 and Anderson and wilen, 1984.)

The system depicted th Figure 1 is composed of four subsystems; namely (1) the natural coho stock recruitment relationship, (2) the aquacultured snolt-release/return relationship, (3) the fishing production and effort dynamics relationships, and (4) the price or demand relationship. Data were
gathered from various published and unpublished sources to estimate the four subsystems. the resulting equations are as follows:

Natural coho stock recruitment relationship
We characterized the popalation of natural coho salmon with a beverton-lut (!957) rodel of the form:

$$
\begin{equation*}
R N_{i t}=E S_{i, t-n} /\left(a_{i}+E_{i} E S_{i, t-n}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& R N_{i t} \text { is the adult recruitment }\left(10^{3}\right. \text { fish im area i, time t, } \\
& E S_{i, t-n} \text { is the escapement of paremt stock }\left(10^{3}\right. \text { fish in area i ut tine t-n, ard } \\
& n \quad \text { is the generation length. }
\end{aligned}
$$

For coho salmon, n equals three years. [A more detailed coho life nistory carile founc in 0DFw, 1992.] Inverting both sides of equation (l) and multiplying by ES ${ }_{i}, t-n$ yields the mire easily estimated form:

$$
\begin{equation*}
E S_{i, t-n} / R N_{i t}=a_{i}+s_{i} E S_{i, t-n} \tag{2}
\end{equation*}
$$

The recruitment for a given year equals total stock which is dpproximated by the sum of: commercial ocean troll catch; open sport catch; net catch (if applicable); ndtural spawing escadeterit; and hatchery returns lobtained from WDF, 1982; ODFW, 1982; and PFMC, 1982;. The portions of the stock derived from hatchery smolts were determined by the ratio of on-station and off-station hatchery returns to tutal escapement times total stock. The portion attributed to the naturaliy breeding population is the remainder of total stock.

The above stock-recruitment relationship was estimated using pooled time-series cross-section data from
(1) the Washington coastal area, (2) Columbia River area, and (3) the Oregonicalifornia coastal area. The intercept was restricted to be equal between regions, but the coefficient cin prent stock was allowed to differ. In the results presented here, direct species interaction between deuacultured and natural fish stocks was ignored due to already-complex nature of the optimization problem isee, however, Anderson and Wilen, 1984).
the resulting equation used here is:

$$
\begin{equation*}
E S_{t-3} / \text { RN }_{t}=\frac{.745}{(2.55)}+\underset{(1.20)}{.00687 E S} 1, t-3+\underset{(3.63)}{.00513 E S} 2, t-3+\underset{(4.99)}{.00683 E S} 3, t-3 \tag{3}
\end{equation*}
$$

The results indicate that net adult stock recrultment, $\mathbb{R N}_{t}$ - ES $t-3$, increases with adult coho spawners, $E S_{t-j}$, and decreases as the density of the adult cono spawners increases.

Population dynamics of ocean released aquacultured salmpn
A quadratic difference equation was used to represent the relationship between ocean srablt release and adult returns, given by

$$
\begin{equation*}
R H_{i t}-S A_{i t-1}=\gamma_{i} S A_{i, t-1}+\delta_{i}\left(S A_{i, t-1}\right)^{2} \tag{4}
\end{equation*}
$$

where
RH it is the number of adu7t returns (10^{3} fish) in area i, and
$S_{i, t-1}$ is the amount of ocean released smolts (10 0^{3} lbs.) in area i.
The equation can be modified by dividing both sides by $S_{1, \pm-1}$ which yields:

$$
\begin{equation*}
\left(\mathrm{RH}_{i, t}=S A_{i, t-1}\right) / S A_{i, t-1}=Y_{i}+\delta_{i, t-1} S A_{i, t-1} \tag{5}
\end{equation*}
$$

The estimetes were done again using pooted time-series and cross-section data on public hatchery releases frow (1) Washington coastal. (2) Col umbia River, and (3) Oregon/California coastal areas (Cummifigs, and uff varlous years). Since aquaculture has only been in operation since 1974, public hatchery production Tha used as a proyy. The estimated equation is:

As with natural coho stock-recruitment relationship, the estimate of the intercept if restricted to be equal between cross-sections. The signs on the cofficients indicate that returning adults increase with smolt release but decrease with density of smolt release.

Fishery production and effort dynamics relationships
ln order to estimate a fishery production function, we used the standard assumption that catch is a function of effort expended and fish stock. The simple functional forr estimated was:

$$
\sigma_{i t}={ }^{9} E_{i t} W_{i t}=G_{i} E W_{i t}
$$

where
$C_{i t}$ is coho catch (10^{3} fish) in area i and time t
$E_{i t}$ is effort $\left(10^{3}\right.$ days fishedi in area i and time t
$W_{i t}$ is coho stock (10^{3} fish) in area i and time t
θ_{i} is the parameter to be estimated for area i, known as the catchability coefficient.
Since the best data on effort for the Northwes: coast are those expended by the Washington troll fleet (WDF), we used data composed of days fished and catch by species in four coastal areas: the Grays Harbor area, the Quillayute area, the Cape Flattery area, and the Strait area. The data set was pooled with estimates corrected for auto cormelation in the time series and correlation between cross-section (see Kementa, pp. 512-514), and the resulting equation is:

The estimated coefficient has the expected positive sign and is significant. Therefore, catch increases proportionately with coho stock and fishing effort.
The relationship constructed to represent the dynamics of fishing effort is basically partial adjustment model for capital stock. Boat days fished are assumed to reflect the size and utilization of the existing capital stock. In addition, it is also assumed that fishermen will alter their capital stock directly as the real value of current catch or the season length changes. The functional form estimated is:

$$
\begin{equation*}
E_{i t}=\left(1-\theta_{i}\right) E_{i, t-1}+\theta_{i} E_{i} S V_{i t} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{i t} \text { and } E_{i, t-1} \text { are the current and lagged number of days fished in area } i \text { and } \\
& S V_{i}, t \quad \text { is the current real exvessel walue (} 1967 \text { dollars) of total catch (coho, chinnook, } \\
& \text { pink) multiplied by the total season length in area } i \text {. Value of total catch is } \\
& \text { equal to number of fish caught times pounds per figh times real price per pound. } \\
& \theta_{i}, E_{i} \text { are adjustment parameters to be estimated, }
\end{aligned}
$$

The data on days fished used in the production function estimation are also used in this estimation. The annual catch of pink, coho and chinook, season lengths for each of the four regions and average anmual weight of the fish by species were found in PFMC. The Oregon prices were used to calculate the value of catch (ODFW) since Washington exvessel prices were not avallable. These prices were deflated by the Consumer Price Index (CPI) to attain the real walue of catch in 1967 dollars.

The results of the pooled estimation correcting the time-series auto-correlation, cross-section heteroskedasticity and cross-sectional correlation are

Fishing effort increases with the real value of catch and season length as expected. The estimated adjustanent coeffictent, (1-.614), 15.386 indicating that effort adjusts 38.6 percent of the difference between current and destred effort in each period.

Although various models have been estimated for canned ard fresh ssum by ot"er resenrchers, wichose a price dependent mode? based on the atsumption that current price depernds on currert cuantity and otrer current variables and also lagged variables. Tiat is,

$$
\begin{equation*}
P_{t}=f\left(x_{t}, x_{t-1}, \ldots, x_{t-n}, z_{t}, z_{t-1}, \ldots, z_{t-n}\right) \tag{11}
\end{equation*}
$$

where
$P_{t}=p r i c e ~ i n ~ t i m e ~ t . ~$
$x_{t-j}=$ quantity demand in $t=j, \delta=0, \ldots, n$.
$z_{t-j} \neq$ other variables (i.e., income) in $t-j, j=0, \ldots, n$.
The lagged variables are proposed because of institutional structure in the cohe market such as tine needed to adjust contracts and the imfluence of inertia and habitwal behavicr on the part or fish buycrs

The particular form of the lag was assumed to be the familiar geometric lag. After making the usual tramsformation (Maddala), the resulting equation used in estimation is:

$$
\begin{equation*}
P C_{t}=\omega(1-\sigma)+d P C_{t-1}+B_{1} C_{t}+e_{2} P_{t}+B_{3} Y_{t}+Y_{t} \tag{12}
\end{equation*}
$$

where
$P C_{t}, P C_{t-1} \begin{aligned} & \text { is the } U . S \text {, real exvessel price of coho salmon in } t \text { and } t-1 \text {, respectively (1967 }\end{aligned}$
C_{t} is the U.S. coho lendings in $\mathrm{t}\left(10^{3}\right.$ pounds),
$\mathrm{Pl}_{\mathrm{t}} \quad$ is the meat, potitry and fish price index divided by one hundredth of the CPI (Dase year 1967),
Yt is the real disposable income for the 1.5 . in $t\left(1967\right.$ dollars $\times 10^{6}$),
o is the parameter which measures the rate of decay, and
$v_{t}=u_{t}-u_{t-1}$.
Wh this model, there are autocorretated errors and the lagged variable $P C$ t-l is mot independent of v_{t}. This means the ordinary least squares estimates are biased and inconsistent. The appropriate estimation technique is generalized least squares which yields unbiased, efficient and consistent estinates of the parameters.

Annad data (1950-1981) far: the average annual domestic nominal and real prices of coho; the meat, poultry and fish price index (MPFI); the Consumer Price Index (CPI); real disposable iricome; and the United States landings of coho mere obtajned from U.S. Department of Commerce (various years). The estimated lagged 1 inear demand function is:

The paraneter estimates have the expected 5 ign and all are significant at the 0.5 level.
The results indicate that the aggregate short-rum price elasticity of demand for coho is -3.62 at the means. Other studies of the demand for salmonid species have found elasticitics in a range from -3.94 to -9.68 for fresh/frozen product (Devoretiz, Quierolo and Johnston, Swartz) and from -1.47 to - 12.92 for cammed salmon (DeVoretz, Hang). Most of these studies are at the wholesafe, not the exvessel, level. ane wald expect the elasticity to be sotewhat lower at the exvessel level than at whoiesaie.

The estimated shortmon income elasticity was 2.63 at the means. The income elasticities estimated by EeHoretz range fron 1.17 to 9.80 . The short-riln cross-price elasticity of demand for coho was found to be 4.35 it the means.

Optinitatlon/Simulation Results

The boye estimated subsystens were conbined in an optiaization/simulation model in order to evaluate varpus iaterrelationships betwen private aquacuiture, public aquaculture, and the comercial fishery. For the resuits presented here, analyzed three different scenarios. In the first base case scenario,
we assumed that public policies are chosen to naximize the profits of commercial fishermen, given the estimated recruitment relationships for natural and aquacultured coho, the catch production relationships and effort dynamics, and the demand relationship. The second case examines optimal policies for the aquaculturist and the third case examines a jointly optimal solution.
In the base case, we simulated a scenario which has fishermen as the principal group of concern in the coho fishery. Both puhlic and private hatchery releases were fixed at current leyels and then a time path of effort (fisning days) was chosen using a non-linear programping algorithm to maximize the present value of fishermen profits. The results are presented in Table 1 and Figures 2 and 3 . (See Appendix for variable definitions and acronyms. (Qualitatively, the optima : present-value maximizing' golicy follows patterns suggested by standard cajital-theoretic work in fisheries economics; namely an initial investment phase in which harvests are kept low and escapement is increased, fol lowed by a harvesting phase near the sustainable yield associated with the new nigher stock levels. There is aiso a disinvestront phase in our results due to the necessity of crossing a terfinal stock level in a finite horizon problem.) Overall, the optind policy solutions for this sinulation thas mirrar the "catemary turnpike" properties discussed for example, in C'ark, 1976; ©lark and Manro, 1975; and Wi'en, 1964

Of particular interest are the steady state or longer-tem ranifications suggested by the model. Although we have not run these simutations out over extended periods, the results presented here are sufficient to gauge the long run tendencies. Table 2 comoares, for example, the ranges associated with the stock size, fisiting effort, catch and escapement for different discount rate and cost assumptions. Again, as theory would suggest, as the discount rate increases, the optimal solution tends towards a smaller stock level and consequent smaller recruitment (catch plus escaperent).
Of equal interest are some of the other price variables dssociated with the optimal policy simulation presented in Table 1. For example, the variables λ, $p_{\text {RN }}$, and PC are dynamic tagrange multipliers associated with the production function, the natural coho fish stock (RN) and the price of coho (PC) respectively. These yield the marginal value to the objective function of marginal changes in the constraints. For example, ${ }^{9} \mathrm{RN}, \mathrm{t}$ measures the increase which could be gained (in 1967 present value dollars) if the coho stock could be increased by a unit in time period t. The variable increases during the investment phase when extra units of stock have high payoffs and then decreases as the terminal time is approached. The value of p_{PC} reffects a similar pattern.
As a comparison case to the commercial fishery optimization problem, we examined a second scenario where the aquaculture firms are assumed to optimize their returns by choosing a smolt release policy. Our findings here are particularly revealing because they illustrate precisely the types of potentid policy conflicts alluded to earlier. In particular, under current conditions, aquaculturists appear to be "bound up" by the activities of the open access commercial fisheries. For example, under the assumption that public hatchery releases and season length restrictions are held at current levels, the profit maximizing private smolt release policy is actually one which does not even utilize the fifteen periods alloted in our base case runs. As Table 3 shows, the aquaculture industry initially follows a pattern (much like the optimal "investment" policies discussed above for the commercial fishery) which builds up the run sizes of aquacultured fish. However, since fishermen harvest these mixed stocks and also respond to increased profits through entry, they ultimately (in this scenario) increase effort and harvest rates on aquacultured fish to the point where the aquatulture industry is effectively driven out of business. Note that this is the opposite of the more typicaliy-voiced fear regarding fishing in mixed stocks; in this case it is the artificial stocks that are driven to (economic) extinction by mixed stock harvesting.

From the point of view of the aquaculturist, the above scenario is one which is not "controllable" in the sense that feasible choices don't admit a wide range of outcomes. for example, if (for some reason) the aquaculturists wished to stimulate commercial fishing effort, smolt reieases could be increased but the density effects together with the small proportion of aquacultured fish in the total would severely constrain the potential impact. On the other hand, if they wish to decrease effort, again the smath proportion of aquaculture in the total limits the potential. What is needed (again from the perspective of the aquaculturists) is some methad of reducing comercial effort on the aixed stocks and hence on aquacultured stocks. Our calculations in this simulation 5 how, in fact, how nuch a margimal decrease in season length would be worth to the aquaculture incustry. The last column in Table 3 expresses the loss
(in 10^{6} present value dollars) associated with a unit (in 10^{2} days) increase in the season length above 105 days in that year along the optimal path. As can be seen, the cost of the margin is as high as $\$ 9,300$ per day and this represents an externality cost associated with the conmercial fishery operating on the mixed stock.
 Industry would choose to allow if they were to control fisheries policy. A bit of reflection suggests an obvious answer; namely that aquaculturists would prefer fishing effort on their own stocks to be zera SInce everything taken by fishermen is lost to aquaculture. Suppose, however, that fishermen agree to a reduction In their season length if they are compensated for the loss with a payment of, for example, $\$ 10,000$ per day for every day reduction below 105 days. In effect this is allowing the aquaculture sector to chnoebsate the commercial fishernen to reduce their externality - producing behavior - much Tike a pollution reduction bribe in a two party externality problem. Table 4 and Figure 4 show the results for this scenaric. Two things are important. First, from the point of view of the aquactiture

Table 1. Commercial Fishery Frofit Maximization
$\left(r=.05 ; \mathrm{KE}_{t}=110 \$(1967) /\right.$ day; $\mathrm{CHI}_{4}=1.4 \times 10^{6}$ coho equivalents $)$
Present Value of profit $=18.74 \times 10^{6} 1967$ dollars

Year	State RN	Exogenous		$\operatorname{Control}_{\mathrm{E}}$	Endogenous			Stat.e中	1	${ }^{2} \mathrm{Ra}$	${ }^{\prime} \mathrm{PC}$
		RH	RAH		$Y \mathrm{C}$	C	FS				
				0585	1.72	619	. 165	3.24	3.24	730	. 151
1980	. 528	. 179	. 078	. 058	0	. 0	. 913	3.37	3.59	3.49	401
1981	. 477	. 205	. 231	. 0	0	. 0	. 818	3, 48	3.31	2.54	1.06
1982	. 680	.105	. 185	. 0035	. 116	. 049	.99	3.58	3.07	2.53	2.55
1983	. 738	. 2	-1	. 0496	1.93	. 998	. 49	3.65	2.96	2.47	2.55
1984	1.19	. 2	-1	. 04924	2.09	1.13	+ 46	3.13	2.88	2.46	? 2.42
1985	1.25	. 2	-1	. 0524	1.09 2.13	1.13	. 44	3.83	2.82	2.45	7.19
1986	1.27	2	. 1	. 0512	1.97	1.00	. 45	3.94	2.76	2.43	2.10
1987	1.15	. 2	-1	. 0516	1.97	. 996	. 43	4.05	2.75	2.42	2.02
1988	1.13	. 2	-1	.0516 .0519	1.97 1.98	. 995	. 43	4.16	2.65	2.44	1.97
1989	1.12	. 2	1	. 0519	1.98 2.01	1. 01	. 41	4.27	2.59	2.47	1.96
1990	1.12	+2	1	. .0537	2.02	1.01	. 40	4.39	2.53	2.37	2.08
1991	1.11	. 2	.1	. 0536	2.51	1.26	. 15	4.50	2.47	. 68	1.90
1992	1.11	. 2	-1	. 06663	2.51	1.25	. 15	4.62	2.42	. 10	1.75
1993	1.10	. 2	-1	- 0663	2.50	1.24	. 15	4.74	?.37	. 72	. 78
1994	1.09	. 2	. 1	. 0603	2,4						
1995	. 75										
1996	. 75										
1997	. 75										

Figure 2. Fishing Effort for Profit Maximizing Dcean Fishery (10^{3} troll days)

Figure 3. Natural Coho Recruitment for Profit Maximiaing Ocean Fishery (10 fish)

Fable 2. Sumary of Long-Run Optimally Managed Coho Fishing

Table 3. Aguaculture Profit Maximization
$\left(K S_{t}=.825 \$(1967) / 10\right.$; ; Density Coef. $=-2.36 ; \mathrm{CHI}_{\mathrm{t}}=1.4 \times 10^{6}$ coho equiv.ir $=.05$; constant season)
Present Value of Profit $=1.55 \times 10^{6} 1967$ dollars

year	State RN	$\begin{gathered} \text { Exg. } \\ \text { RH } \end{gathered}$	State RAH	State E	$\frac{F!}{Y C}$	C	ES	FP	$\begin{gathered} \text { Control } \\ \text { SA? } \end{gathered}$	$\begin{gathered} E \times 0 . \\ 5 \end{gathered}$	State PC	1	${ }^{2}$ RN	$P_{\text {RAH }}$	${ }^{\text {PPC }}$	RG_{S}
										1.15	324	0	-. 47	68	-. 29	
1980	. 528	. 78	.078	. 2585	1.7%	. 62	. 16	. 016	. 173	\cdots	3.24 3.34	-. 48	-. 43	. 93	-. 28	-. 61
1981	. 47%	. 205	. 079	. 9487	1.42	+50	. 26	. 027	-164	1.05	3.45	-. 60	-. 40	1.08	-. 28	-. 74
1982	+680	.105	. 147	. 0412	1.30	-52	-41	. 065	. 180	1.65	3.55	-. 70	-. 37	1.16	- 29	-. 82
1983	. 738	. 2	.167	. 0362	1.225	. 54	. 69	. 0897	. 186	1.05	3.65	-. 76	-. 34	1,17	-. 29	-.87
1984	. 878	. 2	.176	. 0332	1.19	. 56	. 69	. 102	. 191	1.05	3.78	-. 79	-. 31	1.16	-. 28	-.93 -91
1985	1.076	. 2	- 180	. 0323	1.23	. 63	.83	. 104	. 192	1.05	3.84	-. 76	-. 28	1.12	-.26 -23	-.91 -89
1986	1.136	.2	. 182	. 0318	1.25 +1.31	. 65	.87	. 102	. 190	1.65	3,95	-. 70	-. 23	1.05 .96	-.23 -.19	-. -.84
1987	1.196	. 2	.183	-0376	1.31	. 69	. 87	. 097	. 186	1.05	4.65	-. 62	- 17	. 96	-.19 -15	-. 84
1988	1.242	. 2	. 182	. 0344	1.40	. 82	. 81	090	. 178	$\pm .05$	4.15	-. 52	-. 11	. 85	-. 15	-.75 -64
1989	1.253	. 2	-180	. 0371	1.52	. 82	.81	. 079	. 163	1.05	4.27	-. 40	-. 05	- 72	-. 11	-.64 -.50
1990	1.259	. 2	. 175	. 0408	1.67	- 90	+ 73	-064	. 135	1.05	4.35	-. 28	. 0	. 57	-. 06	-.50 -.33
1991	1.258	. 2	.166	. 0457	1.86	1.00	. 68	. 044	. 080	1.05	4.51	- . 16	- 0	. 40	-. 02	-. 33
1992	1.247	. 2	. 147	. 0518	2.09	1.11	. 48	. 020	. 0	1.05	4.63	-. 07	. 0	0.24	. 0	-. 14
1993	1.228	. 2	, 097	. 0589	2.33	1.21	. 15	. 0	0	1.95	4.75	. 0	. 0	0	.	-
1994	1.194	. 2	. 0	. 0659	2.49	1.24	. 1	.	-							
1995	1.134															
1996	1.020															
1997	. 800															

Table 4. Aquaculture Profit Maximization: Season Control Cost $10,000 \mathrm{p}(1967) / 0 \mathrm{y}$ y Less Than 105 $\left\langle K S_{t}=.825 \$(1967) / 1 \mathrm{~b}\right.$. $;$ Density Coef. $=-2.36 ; C H I=1.4 \times 10^{6}$ coho equiv.; $r=.05$) Present Value of Profit $=1.86 \times 10^{6} 1967$ dollars

Year	State RN	$\begin{gathered} \text { ExO. } \\ \text { RH } \end{gathered}$	State R.AH	State E	Endogenous				$\begin{aligned} & \text { Control } \\ & \text { SAP } \end{aligned}$	$\begin{gathered} \text { Control } \\ 5 \end{gathered}$	State P[λ	${ }^{\circ} \mathrm{RH}$	${ }^{\text {PRAH }}$	$P_{\text {PC }}$
					YC	C	ES	EP							
								016	. 082	1.15	3.24	0	-. 42	. 81	-. 28
1980	. 528	. 178	. 078	. 0585	1.72	. 62	. 167	. 016	. 143	1.12	3.35	-. 50	-. 35	1.07	- -26
1981	. 477	. 205	. 099	. 0480	1.41	. 51	.271 427	. 035	. 171	1.05	3.45	-. 64	-. 25	1.25	-. 23
1982	. 680	.105	. 152	. 0404	1.28	* 51	.427 .579	.069	. 192	1.05	3.55	-. 72	-. 23	1.43	-+17
1983	. 738	. 2	. 171	. 0356	1.21	. 54	. 731	. 105	. 210	. 97	3.65	-. 70	-. 22	1.65	$-.11$
1984	. 889	. 2	. 182	. 0315	1.14	. 54	. 933	.121	. 220	. 81	3.75	-. 60	-. 20	1.75	-. 08
1985	1.082	. 2	. 191	. 0270	1.05	. 54	+ 93	. 133	. 226	.81	3.86	-. 65	- . 20	1.82	-. 07
1986	1.140	. 2	. 195	. 0236	. 935	. 49	1.04	. 141	. 231	.81	3.97	-. 67	- $\quad 19$	1.86	-. 06
1987	1.207	. 2	. 197	. 0211	. 856	. 46	1.14 1.22	. 147	. 233	. 82	4.07	-. 69	- 19	1.84	- . 06
1988	1.264	. 2	. 199	. 0194	. 801	+44	1.22	-249	. 234	. 86	4.19	-. 72	- 18	1.79	- 0.07
1989	1. 284	. 2	-199	. 0186	. 862	. 42	1.26	. 849	.733	. 92	4.30	-. 71	-. 13	1.67	--07
1990	1.300	. 2	. 200	. 0189	. 7415	.43 .48	1.32	. 143	. 230	1.00	4.42	-. 0 -0	-. 0	2.E1	
1991	1.311	. 2	-199	. 0208	${ }_{1}^{.875}$. 48	1.23	. 132	. 225	1.05	4.53	$=.53$. 0	1.34	-. 03
1992	1.315	. 2	. 198	. 0246	1.03 1.25	. 57	$\underline{1.14}$. 118	. 216	1.05	4.65	-. 33	. 0	1.13	. 0
1993	1.316	.2	. 197	. 0248	1.25	. 87	1.14	. 097	. 216	1.05	4.77	-. 15	. 0	0	. 0
1994	1.312	. 2	.193	. 0369	1.55	. 85	. 855	-097							
1995	1.302														
1996	1.286														
1997	1.256														

Figure 4. Fishing Effort Coop. vs. Ocean Fishery Om] (10 0^{3} troll days)

Figure 5. Smolt Zelease and Percent of Returning Adults Spawned Under Cooperative Management

Table 5. Cooperative Commercial Fishery/Aquaculture Profit Maximization
(KE $E_{t}=110.0 \$(1967) /$ day; $K B S_{t}=10.0 \$(1967) /$ adult spawned; Density Coef, $=-2.36 ;$ $\mathrm{CHI}_{t}=1.4 \times 10^{5}$ coho equiv.; $r=.05$)
Present Value of Profit $=22.40 \times 10^{6} 1967$ dollars

Year	State RH	$\begin{aligned} & \text { Exp. } \\ & \text { RH: } \end{aligned}$	State RAH	Control E	Endogenous				$\begin{gathered} \text { Control } \\ \mathrm{B} \end{gathered}$	$\begin{aligned} & \text { Endo } \\ & \text { SBP } \end{aligned}$	State PC	λ	$\rho_{\text {RN }}$	${ }^{\text {HRAH }}$	${ }^{\circ} \mathrm{PC}$
					YC	C	ES	EP							
1980	. 528	. 179	. 078	. 0585	1.72	. 62	.164	. 016	1.0		3.24	3.24	. 571	3.99	. 449
1981	. 477	. 205	- 231	. 0010	. 0316	. 012	. 90	. 228	. 081		3.37	3.20	2.19	2.98	. 582
1982	. 680	. 105	. 185	. 0010	. 0331	. 013	. 96	. 182	. 10	. 192	3.48	3.14	2.33	2.90	1.67
1983	. 738	, 1	. 185	. 0010	. 0327	. 014	1.01	. 182	. 10	. 222	3.58	3.07	2.36	2.83	2.39
1984	1.189	. 1	.196	. 0442	1.72	. 89	. 60	. 079	. 24	. 218	3.65	2.96	2.29	2.77	2.45
1985	1.259	. 1	. 196	. 0487	1.94	1.02	. 54	. 067	. 28	. 218	3.74	2.88	2.29	2.72	2.36
1986	1.273	. 1	.197	. 0505	2.02	1.07	. 50	. 063	. 30	. 228	3.83	2.82	2.27	2.66	2.17
1987	1.193	. 1	. 197	. 0490	1.91	. 99	. 50	. 067	. 29	. 225	3.94	2.75	2.27	2.60	2.07
1989	1.168	. 1	. 198	. 0494	1.91	. 98	. 49	. 066	. 29	. 227	4.05	2.71	2.27	2.54	1.98
1989	1.154	-1	. 198	. 0490	1.89	. 96	. 49	. 067	. 29	. 233	4.16	2.64	2.40	2.47	1.95
1990	1.153	. 1	. 198	. 0501	1.93	. 98	. 47	. 064	. 30	. 230	4.27	2.59	2.36	2.41	1.97
1991	1.144	. 1	. 199	. 0507	1.95	. 99	. 45	. 063	. 31	. 233	4.39	2.53	2.32	2.37	2.13
1992	1.144	-1	. 199	. 0667	2.56	1.30	. 14	. 020	. 80	. 230	4.50	2.47	. 54	1.33	1.86
1993	1. 133	. 1	. 199	. 0666	2.46	1.29	.14	. 020	-	. 234	4.62	2.42	. 57	0	1.32
159	I. 124	. 1	. 200	. 0665	2.36	1.26	.16	. 020	-	. 192	4.74	2.37	. 59	0	. 077
159	$\bigcirc, 750$														
19\%	. 750														
1597	$\bigcirc 730$														

industry, their destiny is now "controllable" in the sense that it is possible to stay in business indefinitely and achieve a steady-state smolt release plan. This requires that seasom length be reduced to a level near 80 days, at which level the aquaculturist can release 51 ightly over 230,000 smolts (about 25\% above the previous scenario). Second, even with a relatively stiff payment made for reducing commercial fishing effort, the present value of the aquaculturists profits in this new scenario are higher than in the first scenario. This is the case, of course, precisely because of the cost of the los day minimum season on the aquaculturists. By controlling season length, aquaculturists are able to undertake a more flexible smolt release policy which is more profitable even after the charge is paid.

As a final scenario, we ran a simulation in which it is assumed that fishermen and aquaculturists cooperatively manage both ventures to maximize joint profits. This scenario is not necessarily unrealistic; Alaska currently has several cooperatively operated hatcheries and it is an effective institutional mechanism for internalizing externalities and eliminating the conflicts between decision units.

Table 5 and Figures 4 and 5 reveal the pptimal joint profit maximizing solution. As one would expect, the optimal cooperative policy lies somewhere between those already examined. Fishing effort is initially reduced to a minimum to let natural stocks recover and aquacultured stocks are likewise increased as fast as possible. When the steady-state path is reached, it is characterized by a higher level of the natural and aquacultured stocks and of recruitment. Commercial catch is lower because ocean caught fish have a lower shadow value than their counterparts from aquaculture facilities.

Sumary and Conclusions

As discussed in the opening section, aquacutture has the potential to be very important force in salmon fisheries over the next several decades. Most large-production countries have untapped potential but only a few operating facilities (general public) whereas Norway and other smaller producers appear poised to challenge these dominant forces in the market with large expansions in private aquaculture.

For various reasons, there has been considerable resistance to private salmon aquaculture in North America. Part of the resistance is due, very simply, to fears ouer possible increased competition in the market place, fears over the big-business nature of aquaculture, and fears over potential lass in pol itical control. Where reasoned argument takes place publicly, the discussion often centers on the externalities which would be suffered by commercial fisheries as a result of growth in aquaculture.
This paper presents some analysis of these points of interaction in the one region in Worth America where private aquaculture has come into conflict with commertial fisheries. Statistical analysis presented here and elsewhere (see Anderson, 1983 and Anderson and wilen, 1984) suggests some evidence of densitydependent interaction between hatchery production and natural production, but it appears that crowding in the rivers and at hatchery release points during the smolt phase is far more important than ocean impacts. What are probably most important, however, are mixed stock effects associated with commercial fishing on aquacultured stocks. Our analysis shows that policies directed at controlling comercial efforts can spell success or failure for aquacuiture as well as the commercial fishery. Table 6 below summarizes present values associated with several scenarios examined here.

Table 6. Present Values of Simulated Policies

These values are useful in putting some bounds on what is at stake in the aquaculture controversy in oregon. Two things are evident frow these results. First, it is obvious how important policy is to both
industries. Season length and natural escapement policies are particularly critical and public hatchery releases also play a role. Second, the inefficiencies associated with the current regulatory structure are large in absolute magnitude and even large relative to losses which might occur as a result of sone loss of control to aquaculturists.
Currently the principal control exercised in pacific Coast salmon fisheries consists of season lenģth changes (and area restrictions). The management structure has basically evotved into one in which capacity changes (fostered by higher abundance, prices, etc.) are met by scason lergth changos winich preserve some target escapenent levels. Thus scenario A, in which effort is choter optimally to maximize present values, is not even close to the real base case. In fact, even case 3 is averly optimistic as a base case for fishermen since aquacultured fish are added to the returns from the natural stocks. Over the horizon examined, for example, privately aquacultured recruits range between 15 and 23 percent of total recruits and hence total commercial catch. As a rough guess, then, if about 18 : of the commercial fishery's profits are associated with private aquaculture, its no-aquaculture base case present vilue profits would actually be around $12.49 \times 10^{6} 1967$ dollars. If escapenent policies are not able to restore natural stocks to higher levels as fast as this scenario assumes, present values would pe ever lower.

In sum, then, with no private aquaculture and continuation of past escapement policies, the present value of conmercial fishing profits would be lower than 12.99 million dollars and probably lower than 10.0 million 1967 dollars. If the fishery were totally controlled by the aquaculture industry but with some side payments for excessive season length reductions, fishermen could conceivably be slightily better off and aquaculture profits would be around ? million dollars (case C). With a reasonably gradual ifour or five cycle) build up in natural stocks coupled with a fixed season and profit maximizing smolt release by aquaculture (case B) fishermen could realize over fifteen million dollars, about 18% of which is due to aquaculture. Finally, if the fisting industry could ever agree to bite the bullet and engage in a rapid buildup of natural stocks by closing the fishery for two cycles, a present value close to 19 million without aquaculture could be realized and over 21 million in a cooperative institutional arrangenent.

Perhaps more interesting than these quantitative comparisons is the 7 ight shed on the conflicts between aquaculture and comercial fisheries mentioned earlier. What we have shown is that there are (obviously) points of conflict between the two groups. We have focused on the mixed stock problem, in particular, and have shown that the aquaculture industry needs to reduce season length below current levels to be able to even initiate a sustained industry. On face this is cause for fishermen to be wary of aquaculture growth. Paradoxically, however, if the aquaculture industry were successful in influencing policy to support their objectives, fishermen could also be better off in the long run if they were either compensated for season reductions or if they were allowed to increase effort after artificial stocks were built up. This is the case because there are very large gains to be made by reducing effort in the short run and building up natural stocks at the same time. Thus in the final analysis, the goals of these two groups (though different) may support the same pol icies (assuming mechanisms for cooperation/compensation can be devised) and the conflict may not be as serious as has been believed.

Appendix

Table 1A. Definition of Variables and Associated Assumptions Used in the Control Problems
RH_{t} is the recruitment of natural coho in year t (10^{6} fish).
$\mathrm{RH}_{\mathbf{t}}$ is the exogenously determined recruitment of public aquaculture coho in year t (10^{6} fish).
$\mathrm{RAH}_{\mathrm{t}}$ is the recruitment of private aquaculture coho in year $\mathrm{t}\left(10^{6} \mathrm{fish}\right)$.
CHI_{t}
is the proxy stock of chinook in year t (10^{6} coho equivalents). This variable is exogenous and is held constant at 1.4×10^{6} coho equivalents. The coho equivalent is determined by chinook stock proxy times the average ratio of chinook/coho weight ratio times the average chinook/coho per pound price ratio. The average chinook stock (1971-1982) is assumed to be approximated by average catch of Dregon coastal, Crescent City, Eureka and Fort Bragg, chinook which is 0.500×10^{6} fish (PFMC, 1983). The constant stock proxy was assumed to be representative since the chinook stocks have been relatively stable over the last decade. The average 1971-1982 chinook/coho weight ratio is approximately 2.0 ; the average $1971-1982$ chinook/coho per pound ratio is 1.4 (PFMC, 1982).
E_{t} Is the fishing effort in year t (10^{6} days fished).
PC_{t} is the real price of coho in year t (1967 doltars/pound).
Is the season length in year $t\left(10^{2}\right.$ days). It is assumed that Oregon/Northern California regional season for $1980-1982$ is an average of total mean season length north of Cape Falcon and south of Cape Falcon.
$Y C_{t}$ is the coho equivalent catch in year $t\left(10^{6}\right.$ fish). Y C_{t} is endogenowsly determined by the fishery production relationship:

$$
Y C_{t}=13.5 E_{t}\left\{R N_{t}+R H_{t}+R A H_{t}+C H I_{t}\right\}
$$

$E S_{t}$ is the escapement of adult coho (natural, public aquaculture and private aquaculture) in year t (10^{6} fish). It is endogenously determined by:
$E S_{t}=R N_{t}+R H_{t}+R A H_{t}-C_{t}$.
EP t is the escapement of adult coho to private aquaculture sites (10 fisht. EP is endogenously determined by:
$E P_{t}=R A H_{t}-13.5 E_{t}$ RAH $_{t}$.
SAP $t-1$ is the private $5 m 07 \mathrm{ts}$ purchased for release in year $t-1$ (10^{6} pounds).
$K A P_{t-1}$ is the real cost per unit of smolt released in year $t-i$ (196) dollars/pound). It is assumed that there are 16.5 smolts per pound. The cost used was 0.8251967 dothars/pound (2.25 1981 dollars/

r is the real discount rate and is assumed to be 0.05 per annum.

References

Anderson, J. S. "Bioecononics Interaction Between Aquaculture and the Commpn Property Fishery with Application to Northwest. Salmon Respurces," Ph. D. thesis, University of Californid, Davis. 1983.

Anderson, J.L. and J.E. Wilen. "Estimating the Population Dynamics of Coho Salmon Using Pooled Time Series and Cross Section Data, " Canadian Journal of Fisheries and Aquatic Sciences (forthcoming).
Beverton, R.J.H., S.J. Holt. On the Dynamics of Exploited Fish Populations. Ministry of
Fisheries and Food. London. Fisheries Investigations Series, Vol. 2, Mo. $19,1957$.
California Department of Fish and Game. Files. 1982.
Clark, C. Mathematicai Bioeconomics: The Optimal Managenent of Renewable Resources. Hiley-Interscience, (1976).

Clark, C. and G.R. Munro. "Economics of Fishing and Modern Capital Theory: A Simplified Approach," Journal of Environmental Economics and Management, Vol. 2, (1975), pp. 92-105.
Cummings, T. Edwin. "Private Salmon Hatcheries in Oregon." Oregon Department of Fisheries and Wildife. Portland, Oregon. 1983.
DeVoretz, D. "An Econometric Demánd Model for Canadian Salmon." Canadlan Vourmal of Agriculturat Economics, Wol. 30, No. 1, (1982), pp. 49-60.
Gilbert, Richard 3 . "Dominant Firm Pricing Policy in a Market for an Exhaustible Resource." The Bels Journal of Economics, Vol. 9, Ho. 2, (Autumn 1978), pp. 385-395.
ntrivigator, Michael 9 . Econometric Models. Tecthigues and Applications. Prentice-fall Inc., Englewood Cliffs, New Jersey. 1978.
Knenta, J. Elements of Econometrics. The Machillan Co. New York. 1971.
Maddala, G.5. Econometrics. McGraw-Hill Co. New York. 1977.
Nurtagh. B.A. M.A. Saunders. Minos, A Large-Scale Nonlfnear Programping Systen for problems with 1 inear constraints): User's Guide. Technical Report 50[77-9. Gepartment of Operations kesearch. Stanford Untwarsity. Stanford, California. 1977.
Murtagh, B.A., M.A. Sauders. Implementaliungi a iagramgian-Based Algoritha for Sparse Monlingar
 hesearch, Stanford University. Stanford, Calffornla. 1980a.
Murtagh, B; A., M, A, Saunders, HINOS/AUGNENTED; User's Gulde. Technical Report SOL 80-i4, Systems operations Laborators, Deparkment of Operations Research, Stanford University. Stanford, Californis. 19\%0b:
Gregon Department of Fish and Hildiffe. Files. Meqport, Oregof, October 1982 .

Oregon Department of Fish and wildife. Computer printouts of salmon statistics. Newport, Oregon. Nuly 1982.

Dregon Department of Fish and wildife. Computer printouts on safron prices, : 978-81. Dortignd, Orergon. 1982.

Oregon Department of Fish and wildife. Comprehensive Plan for Production and Management of Oregon's Anadromous Salmon and Trout: Part [I. Coho Salmon Plan. Portland, Dregon. ig8z.

Pacific Fishery Management Council. Propesed Plan for Managing the l982 Sulnon Fisheries off the Coast of California, Oregon and Washington. Porthand, Oregon. I 982.

Pacific Fishery Mamagenent Council. Proposed Plan for Managing the 1983 Sal mon Fisheries Off the Coasts of California, Oregon and Washington. Portland, Oregon. 1983

Queirolo. Lewis E. Richard S. whoston. Market Aralysis of Domestically Proctuced Rainbow Trout and the Impact of the Imtroduction of Pan-Size Salmon. Publication No. ORESU-T-79-dot. Oregur State Jniversity Sea Grant Program. Corvaltis, Oregon. 1977.

Ricker, W. E. "5tock and Recruitment." J. of Fish. Res. Board Canadal 11:559-623. 1954.
Stokes, Robert L. "The Economics of Salmon Ranching." Land Economics 38\{4\}\{1982\}: pi. 464=471.
Swartz, A. Melson. "The Pacific Coho Salmon Fishery: An intraseasonal and Interregional Economic Analysis of the Exvessel Market, "Ph.D. thesis, Oregon State University. ig79.

Thorpe, J.E. "The Development of Salmon Culture Towards Ranching." In: Salmon Ranching. Ed. \therefore. F. Thorpe. Academic Press. New Yark. 1981.

United States Department of Commerce, Burgau of Census. Various years. Statisticat Abstract of the United S*ates. Washington, D.C.

United States Department of Comerce, Oceanic and Atmospheric Administration, National Marine fisheries Service. Various years. Current Fishery Statistics. Washingtor, D, C.

Washington Department of Fisheries. Computer printouts. October 1982.
Washington Department of Fisheries. Files. October 1982
Washington Department of Fisheries. Fishery Statistics Report, Olymia, Washington. Various years.
Wilen, J.E. "Eioeconomics and Optimal Use of Notural Populations." In A.V. Kreese and J.L. Sweeney (eds.). Handbook of Natural Resource and Energy Economics. North-Hol Tand Fublishing Company (forthcoming).

Wright. Samuet G. Status of Washington's Conmercial Troll Salmon Fishery in the Mid-1970's. Washington Department of fisheries; Techntcat Report No, 21. 01jmpia, Washington. 1975.

[^0]: *Unless stated otherwise, the number refers to the Russian language journal Ryonoe Khozialistyo (Fisheries Econony), published in the USSR.

[^1]: 1. Ob itogakh vypolnenia gosudarstvennogo plana ekonomicheskogo i sotsialnogo razvitia SSSR v 1982 g . (On the results of the fulfillment of the
 national plari for economic and social development of the USSR in 1982 . Ekonomicheskaia Gazeta 1983 , \#5, January, p. 3).
[^2]: It was expected that external trade in seafood, in the long run, would be enhanced by the implementation of the MFCMA, all other events held constant. However, passage and implementation of the MFCMA was the culmination of activities which were essentlally global in proportion. The passage and implementation of the MFCMA did not occur under a static world oceans regine. Rather, it occurred during the time when other countries had already changed theif ocean jurisdiction or were in the process of making such a change.

 This paper will argue that extended jurisdiction might affect the structure and performance of fishing industries worldwide, by altering the amount of one factor (ocean space) available to the . That is, ane would expect a direct result of extended jurisdiction to be changes in the relative factor shares used \ddagger a

